【導讀】本文介紹了基于MAX5879等RF DAC的RF直接變頻發(fā)送器設計,文章列舉了零中頻、正交IF調制、高中頻調制以及RF直接變頻架構,詳細介紹了RF直接變頻帶給智能手機、平板電腦等無線設備的優(yōu)勢。正如本文所述,利用高性能DAC實現(xiàn)的RF直接變頻能夠大幅減少通信系統(tǒng)的元件數(shù)量、降低功耗并合成寬頻帶信號。
引言
無線電發(fā)射器在經歷了若干年的發(fā)展后,逐步從簡單中頻發(fā)射架構過渡到正交中頻發(fā)送器、零中頻發(fā)送器。而這些架構仍然存在局限性,最新推出的RF直接變頻發(fā)送器能夠克服傳統(tǒng)發(fā)送器的局限性。本文比較了無線通信中不同發(fā)射架構的特點,RF直接變頻發(fā)送器采用高性能數(shù)/模轉換器(DAC),比傳統(tǒng)技術具有明顯優(yōu)勢。RF直接變頻發(fā)送器也具有自身挑戰(zhàn),但為實現(xiàn)真正的軟件無線電發(fā)射架構鋪平了道路。
RF DAC,例如14位2.3Gsps MAX5879,是RF直接變頻架構的關鍵電路。這種DAC能夠在1GHz帶寬內提供優(yōu)異的雜散和噪聲性能。器件在第二和第三奈奎斯特頻帶采用創(chuàng)新設計,支持信號發(fā)射,能夠以高達3GHz的輸出頻率合成射頻信號,測量結果驗證了DAC的性能。
傳統(tǒng)的射頻發(fā)送器架構
過去數(shù)十年間,一直采用傳統(tǒng)的發(fā)送器架構實現(xiàn)超外差設計,利用本振(LO)和混頻器產生中頻(IF)?;祛l器通常在LO附近產生兩個鏡頻(稱為邊帶),通過濾除其中一個邊帶獲得有用信號?,F(xiàn)代無線發(fā)射系統(tǒng),尤其是基站(BTS)發(fā)送器大多對基帶數(shù)字調制信號進行I、Q正交調制。
圖1. 無線發(fā)送器架構。
正交中頻發(fā)送器
復數(shù)基帶數(shù)字信號在基帶有兩個通路:I和Q。采用兩個信號通路的好處是:使用模擬正交調制器(MOD)合成兩個復數(shù)IF信號時,其中一個IF邊帶被消除。而由于I、Q通路的不對稱性,不會非常理想地抵消調制器的鏡頻。這種正交IF架構如圖1(B)所示,圖中,利用數(shù)字正交調制器和LO數(shù)控振蕩器(NCO)對I、Q基帶信號進行內插(系數(shù)R),并調制到正交IF載波。然后,雙DAC將數(shù)字I、Q IF載波轉換成模擬信號,送入調制器。為了進一步增大對無用邊帶的抑制,系統(tǒng)還采用了帶通濾波器(BPF)。
零中頻發(fā)送器
圖1(A)所示的零中頻(ZIF)發(fā)送器中,對基帶數(shù)字正交信號進行內插,以滿足濾波要求;然后將其送入DAC。同樣在基帶將DAC的正交模擬輸出送至模擬正交調制器。由于將整個已調制信號轉換到LO頻率的RF載波,所以,ZIF架構真正凸顯了正交混頻的“魅力”。然而,考慮到I、Q通路并非理想通路,例如LO泄漏和不對稱性,將會產生反轉的信號鏡像(位于發(fā)射信號范圍之內),從而造成信號誤碼。多載波發(fā)送器中,鏡頻信號可能靠近載波,造成帶內雜散輻射。無線發(fā)送器往往采用復雜的數(shù)字預失真,用來補償此類瑕疵。
RF直接變頻發(fā)送器
圖1(D)所示RF直接變頻發(fā)送器中,在數(shù)字域采用正交解調器,LO由NCO取代,從而在I、Q通路獲得幾乎完美的對稱性,基本沒有LO泄漏。所以數(shù)字調制器的輸出為數(shù)字RF載波,送入超高速DAC。由于DAC輸出為離散時間信號,產生與DAC時鐘頻率(CLK)等距的混疊鏡頻。由BPF對DAC輸出進行濾波,選擇射頻載波,然后將其送至可變增益放大器(VGA)。
高中頻發(fā)送器
RF直接變頻發(fā)送器也可利用這種方法產生較高中頻的數(shù)字載波,如圖1(C)所示。這里,DAC將數(shù)字中頻轉換為模擬中頻載波。DAC之后利用帶通濾波器的選頻特性濾除中頻鏡頻。然后將該需要的中頻信號送入混頻器,產生IF信號與LO混頻的兩個邊帶,經過另外一個帶通濾波器濾波,獲得需要的RF邊帶。
顯然,RF直接變頻架構需要最少的有源元件。由于采用帶數(shù)字正交調制器和NCO的FPGA或ASIC取代模擬正交調制器和LO,RF直接變頻架構避免了I、Q通道的不平衡誤差及LO泄漏。此外,由于DAC的采樣率非常高,更容易合成寬帶信號,同時可保證滿足濾波要求。
高性能DAC是RF直接變頻架構取代傳統(tǒng)無線發(fā)送器的關鍵元件,該DAC需要產生高達2GHz甚至更高的射頻載波,動態(tài)性能要達到其它架構提供的基帶或中頻性能。MAX5879就是一款這樣的高性能DAC。
利用MAX5879 DAC實現(xiàn)RF直接變頻發(fā)送器
MAX5879是一款14位、2.3Gsps RF DAC,輸出帶寬大于2GHz,具有超低噪聲和低雜散性能,設計用于RF直接變頻發(fā)送器。其頻率響應(圖2)可通過更改其沖激響應進行設置,不歸零(NRZ)模式用于第一奈奎斯特頻帶輸出。RF模式集中第二、第三奈奎斯特頻帶的輸出功率。歸零(RZ)模式在多個奈奎斯特頻帶提供平坦響應,但輸出功率較低。
MAX5879的獨特之處在于RFZ模式。RFZ模式為“零填充”射頻模式,所以,DAC輸入采樣率為其它模式的一半。該模式對于采用較低帶寬合成信號非常有用,并可輸出高階奈奎斯特頻帶的高頻信號。所以MAX5879 DAC可用于合成超出其采樣率的調制載波,僅受限于2+GHz模擬輸出帶寬。
圖2. MAX5879 DAC的可選頻響特性。
MAX5879性能測試表明:940MHz下,4載波GSM信號的交調失真大于74dB (圖3);2.1GHz下,4載波WCDMA信號的鄰道泄漏功率比(ACLR)為67dB (圖4);2.6GHz下,2載波LTE的ACLR為65dB (圖5)。這種性能的DAC能夠支持多奈奎斯特頻帶中各種數(shù)字調制信號的直接數(shù)字合成,可作為多標準、多頻帶無線基站發(fā)送器的公共硬件平臺。
圖3. MAX5879 4載波GSM性能測試,940MHz和2.3Gsps (第一奈奎斯特頻帶)。
圖4. MAX5879 4載波WCDMA性能測試,2140MHz和2.3Gsps (第二奈奎斯特頻帶)。
圖5. MAX5879 2載波LTE性能測試,2650MHz和2.3Gsps (第三奈奎斯特頻帶)。
RF直接變頻發(fā)送器應用
MAX5879 DAC也可以同時發(fā)送奈奎斯特頻帶的多個載波。該功能目前用于有線電視下行發(fā)射鏈路,發(fā)送50MHz至1000MHz頻帶的多個QAM調制信號。對于該應用,RF直接變頻發(fā)射器可以支持的載波密度是其它發(fā)射架構的20-30倍。此外,由于單個寬帶RF直接變頻發(fā)送器取代了多個無線發(fā)送器,從而大大減小了有線電視前端的功耗和面積。
基于MAX5879的RF直接變頻發(fā)送器可利向用于寬帶、高頻輸出的應用,例如,隨著智能手機和平板電腦的日益普及,無線基站將需要更寬頻帶。毫無疑問,當前支持此類裝置的發(fā)射器將逐步由基于高性能RF DAC (例如MAX5879)的RF直接變頻發(fā)送器所取代。
總結
基于RF DAC的發(fā)送器具有遠遠超出傳統(tǒng)架構的發(fā)射帶寬,而且不會損失動態(tài)性能,可利用FPGA或ASIC實現(xiàn),省去了模擬正交調制器和LO合成器,從而提高無線發(fā)送器的可靠性。這種方案也大大減少了元件數(shù)量,多數(shù)情況下也會降低系統(tǒng)功耗。
推薦閱讀: