高功率電源應用中需要怎樣的隔離驅(qū)動?
發(fā)布時間:2020-11-16 責任編輯:lina
【導讀】在電源與充電樁等高功率應用中,通常需要專用驅(qū)動器來驅(qū)動最后一級的功率晶體管。這是因為大多數(shù)微控制器輸出并沒有針對功率晶體管的驅(qū)動進行優(yōu)化,如足夠的驅(qū)動電流和驅(qū)動保護功能等,而且直接用微控制器來驅(qū)動,會導致功耗過大等弊端。
在電源與充電樁等高功率應用中,通常需要專用驅(qū)動器來驅(qū)動最后一級的功率晶體管。這是因為大多數(shù)微控制器輸出并沒有針對功率晶體管的驅(qū)動進行優(yōu)化,如足夠的驅(qū)動電流和驅(qū)動保護功能等,而且直接用微控制器來驅(qū)動,會導致功耗過大等弊端。
首先,在功率晶體管開關(guān)過程中,柵極電容充放電會在輸出端產(chǎn)生較高的電壓與電流,高電壓與高電流同時存在時,會造成相當大的開關(guān)損耗,降低電源效率。因此,在控制器和晶體管之間引入驅(qū)動器,可以有效放大控制器的驅(qū)動信號,從而更快地對功率管柵極電容進行充放電,來縮短功率管在柵極的上電時間,降低晶體管損耗,提高開關(guān)效率。其次,更大的電流可以提高開關(guān)頻率,開關(guān)頻率提高以后,可以使用更小的磁性器件,以降低成本,減小產(chǎn)品體積。
為什么要用隔離驅(qū)動?
給功率管增加驅(qū)動的方式有兩種,一種是非隔離驅(qū)動,一種是隔離驅(qū)動。傳統(tǒng)電路里面經(jīng)常見到非隔離驅(qū)動,在高壓應用中一般采用半橋非隔離驅(qū)動,該驅(qū)動有高低兩個通道,低側(cè)是一個簡單的緩沖器,通常與控制輸入有相同的接地點;高側(cè)則除了緩沖器,還包含高電壓電平轉(zhuǎn)換器。
非隔離驅(qū)動有很多局限性。首先,非隔離驅(qū)動模塊整體都在同一硅片上,因此耐壓無法超出硅工藝極限,大多數(shù)非隔離驅(qū)動器的工作電壓都不超過700伏。其次,當高側(cè)功率管關(guān)閉而低側(cè)功率管打開時,由于寄生電感效應,兩管之間的電壓可能會出現(xiàn)負壓,而非隔離驅(qū)動耐負壓能力較弱,所以如果采用非隔離驅(qū)動,應特別注意兩管間電路設(shè)計。第三,非隔離驅(qū)動中需要用到高電壓電平轉(zhuǎn)換器,高電平轉(zhuǎn)換到低電平時會帶來噪聲,為了濾除這些噪聲,電平轉(zhuǎn)換器中通常加入濾波器,這會增加傳播延遲,而低側(cè)驅(qū)動器就需要額外增加傳輸延遲,以匹配高側(cè)驅(qū)動器,這就既增加了成本,又使得延遲很長。第四,非隔離驅(qū)動與控制芯片共地,不夠靈活,無法滿足現(xiàn)在許多復雜的拓撲電路要求,例如在三相PFC三電平拓撲中,要求多個輸出能夠轉(zhuǎn)換至控制公共端電平以上或以下,所以這種場景無法使用非隔離驅(qū)動。
相比非隔離驅(qū)動,隔離驅(qū)動就有很多優(yōu)勢,這里以數(shù)字隔離驅(qū)動來做說明。在數(shù)字隔離驅(qū)動器內(nèi)部,有兩塊或更多的硅片,硅片之間通過絕緣材料隔離,而控制信號通過電容型或電磁型方式穿過隔離層來傳遞,從而讓輸入與輸出處于不同硅片上,這種隔離方式能繞過硅工藝極限,可以滿足高耐壓需求,隔離驅(qū)動可以承受10kV以上的浪涌電壓。此外,兩個輸出驅(qū)動之間,也有絕緣材料建構(gòu)的隔離帶,所以與非隔離驅(qū)動要求與控制信號共地不同,隔離輸出接地點選擇更靈活,可以匹配不同電路拓撲需要。
數(shù)字隔離驅(qū)動器的優(yōu)勢
光耦隔離是傳統(tǒng)的隔離方式,但與數(shù)字隔離相比,光耦隔離在性能和面積上都不占優(yōu)勢。
首先,光耦隔離方案傳輸延遲較大,通常在百納秒以上。在光耦隔離方案中,LED將柵極驅(qū)動信號轉(zhuǎn)換為光信號,再通過光電二極管等光敏電路轉(zhuǎn)換為待測電信號,根據(jù)結(jié)構(gòu)設(shè)計的不同,常見的光耦傳播延遲在幾百納秒甚至微秒級。高速光耦通過優(yōu)化內(nèi)部寄生參數(shù)、增加LED驅(qū)動強度等設(shè)計,可在幾十納秒時間內(nèi)接通和斷開,但成本會上升很多。
常規(guī)光耦方案的傳播延遲甚至不如非隔離驅(qū)動。在半橋非隔離驅(qū)動中,因為增加添加了速度較慢的高電壓電平轉(zhuǎn)換器,以及去毛刺和濾波電路,常見延遲時間可達到100納秒,因為低側(cè)要與高側(cè)匹配,所以要在低側(cè)添加一個單獨的延遲時鐘,整個系統(tǒng)傳播延遲在100納秒左右。
數(shù)字隔離驅(qū)動通過上百兆高頻載波編解碼,開關(guān)只需幾納秒甚至更短的時間。但由于內(nèi)部邏輯延遲和去毛刺濾波設(shè)計,所以延遲到幾十納秒。以納芯微NSi6602為例,隔離驅(qū)動傳輸延遲典型值是在25納秒,最高值不超過35納秒。
其次,光耦方案脈寬失真較大。因為光電檢測器中的LED開啟和關(guān)閉時間并不總是對稱,且溫度越高不對稱越嚴重,所以光耦脈寬失真比較嚴重,光耦方案脈寬失真范圍從幾十納秒到幾百納秒。
數(shù)字隔離驅(qū)動的脈寬失真主要由振蕩器計時精度、隔離層傳輸特性和接收端檢測電路造成。NSi6602可將脈寬失真控制在6納秒以內(nèi),在脈寬失真這項參數(shù)上,數(shù)字隔離驅(qū)動也是大幅領(lǐng)先。
其他在設(shè)計中要注意的參數(shù)
除了傳播延遲和脈寬失真。在半橋拓撲中,如果使用單通道隔離驅(qū)動器,需要注意上下兩通道的延時匹配,如果采用了不同批次的器件,很容易帶來延時匹配問題,另外,兩個單通道隔離驅(qū)動在工作時結(jié)溫可能也會有差異,溫度差也會導致信號傳輸延時。對NSi6602這種高集成的雙通道半橋數(shù)字隔離驅(qū)動而言,就不太需要考慮延時匹配問題,這是因為在封裝時,納芯微都會選擇同一批次而且在晶圓上位置最接近的一對接收器,這樣制造差異影響最小,而一對接收器封裝在同一個芯片中,也能減少溫度差異對延時的影響。NSi6602可將上下通道的延時匹配這個指標控制在5納秒以內(nèi)。
共模瞬態(tài)抗干擾度(CMTI)也是一個需要注意的指標。特別是如果驅(qū)動后級接的是碳化硅功率管,這是因為碳化硅功率管寄生電容更小,所以電壓瞬態(tài)變化值更大,同樣一個系統(tǒng),如果從MOS功率管改為碳化硅功率管,其瞬態(tài)電壓比時間(dV/dt)的峰值會是MOS管的2到3倍,所以需要更高的CMTI指標。NSi6602的CMTI達到±150kV/μs,驅(qū)動碳化硅功率管毫無壓力。
在5G基站、數(shù)據(jù)中心和充電樁中的應用
隨著開關(guān)電源的小型化和智能化,在5G通信、數(shù)據(jù)中心、充電樁和車載電源中,工程師越來越多選擇隔離驅(qū)動以增強電源性能。
由于歷史原因,通信系統(tǒng)直流供電一般采用-48V輸入,即備電電池的正端接地。在過去,通信設(shè)備內(nèi)部通常采用升降壓式(Buck-Boost)非隔離拓撲來實現(xiàn)輸入負壓到輸出正壓的轉(zhuǎn)換。但伴隨5G的到來,基站部署數(shù)量增加,基站設(shè)備小型化要求也越來越高,這就需要在電源部分進一步提高功率密度,采用隔離驅(qū)動會帶來很多好處。
非隔離驅(qū)動需要與控制芯片共地,所以非隔離驅(qū)動中,控制芯片地只能取在-48V,這就使得控制芯片易受到來自-48V電平的浪涌或雷擊等影響。而采用隔離驅(qū)動,則可以把控制芯片與驅(qū)動接到不同的接地點,控制芯片可以接在PGND(即設(shè)備地),所以不易受雷擊與浪涌影響,抗干擾能力強。而且,控制芯片接到設(shè)備地也使得其與上位機通信更加方便,不需要再加總線隔離芯片,輸出采樣也不用隔離,電源性能更穩(wěn)定,采樣保護更及時。
在數(shù)據(jù)中心交流轉(zhuǎn)直流(AC-DC)電源中,也可以通過加入NSi6602隔離半橋驅(qū)動來改善電源性能,在流行的整流橋加升壓PFC與LLC架構(gòu)中,還可以通過增加隔離半橋驅(qū)動的方式,將有橋PFC改為無橋PFC,從而減少二極管使用數(shù)量,并提高電源效率。
在新能源汽車充電樁中的直流轉(zhuǎn)交流電源通常采用三相交流供電,由于該設(shè)備須人員操作,所以在安全標準上要求極高,需要在操作人員可使用的接口與任何高壓電路之間提供增強隔離,以滿足系統(tǒng)對安全的要求,防止瞬時過壓、浪涌過壓和爬電等造成的安全隱患。這時候,隔離驅(qū)動就是最好的選擇。
事實上,充電樁直流輸出高達800V,而非隔離驅(qū)動最高耐壓只有700V,無法滿足充電樁應用的基本要求。而變壓器隔離驅(qū)動效率低、器件多、面積大。以NSi6602為代表的數(shù)字隔離驅(qū)動則具有高集成特性,成本更低,而且滿足加強絕緣要求,在可承受耐壓條件下,可工作十年以上。
基于隔離半橋驅(qū)動的240W高效率同步整流電源方案
如下圖所示,是一款可用于通信系統(tǒng)的48V輸入、12V輸出240W的隔離半橋同步整流電源方案,其開關(guān)頻率為200KHz,最高效率可達95%
此電源方案的半橋功率管驅(qū)動部分與副邊同步整流功率管驅(qū)動部分采用了納芯微高集成度、高可靠性隔離半橋驅(qū)動芯片NSi6602,輸出反饋控制部分采用了納芯微高精度隔離誤差放大器NSi3190。此方案支持輸入電壓范圍36V-60V,輸出電壓12V,電流20A,開關(guān)頻率200KHz,原副邊的輔助供電電路采用Fly-buck拓撲,本電源具備UVLOOVPOCPOTP等多種保護功能。功能框圖如下:
圖 240W同步整流電源功能框圖
更多關(guān)于此方案的詳細資料和數(shù)據(jù),請參考納芯微官網(wǎng)。
總結(jié)
在5G通信、數(shù)據(jù)中心、充電樁和車載電源等應用中,無論是與非隔離驅(qū)動,還是與光耦隔離驅(qū)動相比,數(shù)字隔離驅(qū)動在傳播時延、可靠性和尺寸等方面都具有明顯的優(yōu)勢,由于集成度高,成本優(yōu)勢也很明顯,特別適合當前開關(guān)電源設(shè)計智能化、小型化的趨勢。
關(guān)于納芯微
蘇州納芯微電子股份有限公司是國內(nèi)領(lǐng)先的信號鏈芯片及其解決方案提供商,聚焦傳感器與數(shù)字隔離兩大產(chǎn)品方向。納芯微電子專注于高性能集成電路芯片的設(shè)計、開發(fā)、生產(chǎn)和銷售,為客戶提供一站式系統(tǒng)解決方案。
免責聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問題,請電話或者郵箱聯(lián)系小編進行侵刪。
特別推薦
- 授權(quán)代理商貿(mào)澤電子供應Same Sky多樣化電子元器件
- 使用合適的窗口電壓監(jiān)控器優(yōu)化系統(tǒng)設(shè)計
- ADI電機運動控制解決方案 驅(qū)動智能運動新時代
- 倍福推出采用 TwinSAFE SC 技術(shù)的 EtherCAT 端子模塊 EL3453-0090
- TDK推出新的X系列環(huán)保型SMD壓敏電阻
- Vishay 推出新款采用0102、0204和 0207封裝的精密薄膜MELF電阻
- Microchip推出新款交鑰匙電容式觸摸控制器產(chǎn)品 MTCH2120
技術(shù)文章更多>>
- 中微公司成功從美國國防部中國軍事企業(yè)清單中移除
- 華邦電子白皮書:滿足歐盟無線電設(shè)備指令(RED)信息安全標準
- 功率器件熱設(shè)計基礎(chǔ)(九)——功率半導體模塊的熱擴散
- 準 Z 源逆變器的設(shè)計
- 第12講:三菱電機高壓SiC芯片技術(shù)
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負載的解決方案
- 車用連接器的安全創(chuàng)新應用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
單向可控硅
刀開關(guān)
等離子顯示屏
低頻電感
低通濾波器
低音炮電路
滌綸電容
點膠設(shè)備
電池
電池管理系統(tǒng)
電磁蜂鳴器
電磁兼容
電磁爐危害
電動車
電動工具
電動汽車
電感
電工電路
電機控制
電解電容
電纜連接器
電力電子
電力繼電器
電力線通信
電流保險絲
電流表
電流傳感器
電流互感器
電路保護
電路圖