具有溫度補(bǔ)償?shù)母綦x式低功耗PH值測試系統(tǒng)
發(fā)布時間:2020-08-14 責(zé)任編輯:wenwei
【導(dǎo)讀】圖1所示電路是一個完全隔離式低功耗pH傳感器信號調(diào)理器和數(shù)字化儀,并且?guī)в凶詣訙囟妊a(bǔ)償以實現(xiàn)高精度。該電路可為0至14范圍內(nèi)的pH值提供精度為0.5%的讀數(shù),無噪聲代碼分辨率大于14位,適用于多種工業(yè)應(yīng)用,如化工、食品加工、水處理、污水分析等。
圖1. pH傳感器電路圖(簡化原理圖: 未顯示所有連接和去耦)
該電路支持眾多內(nèi)部電阻超高(范圍從1 MΩ至數(shù)GΩ)的pH傳感器,其數(shù)字信號和電源隔離設(shè)計使其免受惡劣工業(yè)環(huán)境中常見的噪聲和瞬變電壓的影響。
電路描述
pH測量的基本原理
pH值是衡量水溶液中氫離子和氫氧化物離子相對量的一項指標(biāo)。就摩爾濃度來說,25°C的水含有1 × 10−7摩爾/升氫離子,氫氧化物離子濃度與此相同。中性溶液指氫離子濃度正好等于氫氧化物離子濃度的溶液。pH值是表示氫離子濃度的另一種方式,定義如下:
因此,如果氫離子濃度為1.0 × 10−2摩爾/升,則pH值為2.00。
pH電極是許多工業(yè)所使用的電化學(xué)傳感器,但對水處理和污水工業(yè)具有特別重要的意義。pH探針由一個玻璃測量電極和一個參考電極構(gòu)成,類似于一塊電池。當(dāng)把探針置于溶液中時,測量電極產(chǎn)生一個電壓,具體取決于溶液中氫的活性,然后將該電壓與參考電極的電位進(jìn)行比較。隨著溶液酸性的增強(qiáng)(pH值變低),玻璃電極電位相對于參比電極陽性增強(qiáng)(+mV);隨著溶液堿性的增強(qiáng)(pH值變高),玻璃電極電位相對于參比電極陰性增強(qiáng)(-mV)。這兩個電極之差即為測得電位。在理想情況下,典型的pH探針在25°C下會產(chǎn)生59.154 mV/pH單位,用能斯脫方程表示為:
其中:
E = 氫電極電壓,活性未知
α = ±30 mV,零點容差
T = 環(huán)境溫度(單位:°C)
n = 1(25 °C),價(離子上的電荷數(shù))
F = 96485庫侖/摩爾,法拉第常數(shù)
R = 8.314 伏特-庫侖/°K摩爾,阿伏加德羅氏數(shù)
pH = 未知溶液的氫離子濃度
pHISO = 7,參比氫離子濃度
方程表明,產(chǎn)生的電壓取決于溶液的酸度和堿度,并以已知方式隨氫離子活性而變化。溶液溫度的變化會改變其氫離子的活性。當(dāng)溶液被加熱時,氫離子運(yùn)動速度加快,結(jié)果導(dǎo)致兩個電極間電位差的增加。另外,當(dāng)溶液冷卻時,氫活性降低,導(dǎo)致電位差下降。根據(jù)設(shè)計,在理想情況下,當(dāng)置于pH值為7的緩沖溶液中時,電極會產(chǎn)生零伏特電位。
關(guān)于pH理論的一本不錯的參考書是《pH理論與實踐》(出版社:Radiometer Analytical SAS;出版地點:VilleurbanneCedex,法國)。
電路細(xì)節(jié)
該設(shè)計為帶溫度補(bǔ)償?shù)膒H傳感器提供了一種整體解決方案。有三個重要的電路級:pH探針緩沖器、ADC和數(shù)字及電源隔離器,如圖1所示。
AD8603,是一款精密微功耗(最大值50 μA)及低噪聲(22 nV/√Hz)CMOS運(yùn)算放大器,配置為連接AD7793通道之一輸入的緩沖器。AD8603的典型輸入偏置電流為200 fA,為高內(nèi)部電阻pH探針提供了一種有效的解決方案。
pH檢測和溫度補(bǔ)償系統(tǒng)基于AD7793,24位(Σ-Δ)ADC。它有三個差分模擬輸入和一個片內(nèi)低噪聲、可編程增益放大器(PGA),其范圍為單位增益至128。AD7793的最大功耗僅為500 μA,適用于任何低功耗應(yīng)用。有一個低噪聲、低漂移內(nèi)部帶隙基準(zhǔn)電壓源,而且也可采用一個外部差分基準(zhǔn)電壓。輸出數(shù)據(jù)速率可通過軟件編程設(shè)置,可在4.17 Hz至470 Hz的范圍內(nèi)變化。
ADuM5401(四通道數(shù)字隔離器,集成DC-DC轉(zhuǎn)換器)提供微控制器與AD7793數(shù)字線路之間的數(shù)字信號和電源隔離功能。利用iCoupler芯片級變壓器技術(shù),能夠隔離邏輯信號和DC/DC轉(zhuǎn)換器中的電源反饋路徑。
pH傳感器接口緩沖器
典型的pH探針電極由玻璃制成,可形成極高的電阻,范圍從1 MΩ到1 GΩ不等,充當(dāng)與pH電壓源串聯(lián)的電阻,如圖2所示。
圖2. 連接ADC的pH傳感器和緩沖器接口(簡化原理圖: 未顯示所有連接、RTD和去耦。)
流過該串聯(lián)電阻的緩沖放大器偏置電流會給系統(tǒng)帶來失調(diào)誤差。為使電路與該高源電阻隔離開來,在這種應(yīng)用中,需要一個高輸入阻抗、超低輸入偏置電流的緩沖放大器。AD8603用作該應(yīng)用的緩沖放大器,如圖2所示。AD8603的低輸入電流可以最大限度地減少流過電極電阻的偏置電流所產(chǎn)生的電壓誤差。
就25°C下串聯(lián)電阻為1 GΩ的pH探針來說,對于200 fA典型輸入偏置電流,失調(diào)誤差為0.2 mV (0.0037 pH)。即使在1 pA的最大輸入偏置電流下,誤差也只有1 mV。
10 kΩ/1 µF低通噪聲濾波器針對緩沖放大器輸出的截止頻率為f= 1/2πRC,即16 Hz。
必須利用防護(hù)、屏蔽、高絕緣電阻支柱以及其他此類標(biāo)準(zhǔn)皮安方法,以最大限度地減少AD8603緩沖器高阻抗輸入端的泄漏。
ADC通道1配置,pH傳感器
該級涉及測量pH電極產(chǎn)生的小電壓。表1展示了一個典型pH探針的技術(shù)規(guī)格?;谀芩姑摲匠蹋瑏碜蕴结樀臐M量程電壓范圍為±414 mV (±59.14 mV/pH) (25°C)至±490 mV (±70mV/pH)(80°C)。
表1. 典型pH探針的技術(shù)規(guī)格
在讀取pH探針輸出電壓時,ADC采用外部1.05 V基準(zhǔn)電壓源,增益配置為1。滿量程輸入范圍為±VREF/G = ±1.05 V,來自pH探針的最大信號為±490 mV (80°C)。
由于傳感器的輸出是雙極性的,并且AD7793采用單電源供電,因此,pH探針產(chǎn)生的信號應(yīng)偏置到地以上,以使其處于ADC的可接受共模范圍之內(nèi)。該偏置電壓產(chǎn)生的方式是,將210 µA IOUT2電流注入5 kΩ 0.1%電阻,如圖2所示。結(jié)果產(chǎn)生1.05 V共模偏置電壓,這同時充當(dāng)ADC基準(zhǔn)電壓。
ADC通道2配置,RTD
ADC的第二通道監(jiān)控在RTD上產(chǎn)生的電壓,該RTD由AD7793的IOUT2電流輸出引腳驅(qū)動。210 μA激勵電流驅(qū)動由RTD和精密電阻(5 kΩ, 0.1%)構(gòu)成的串聯(lián)組合。(參見圖1)。
純鉑的溫度系數(shù)為0.003926 Ω/Ω/°C。根據(jù)DIN Std. 43760-1980和IEC 751-1983標(biāo)準(zhǔn),工業(yè)RTD的正常系數(shù)為0.00385 Ω/Ω/°C。RTD的精度通常以0°C為基準(zhǔn)。DIN 43760標(biāo)準(zhǔn)認(rèn)可兩個類,如表2所示,ASTM E–1137標(biāo)準(zhǔn)認(rèn)可兩個級,如表3所示。
表2. DIN-43760的標(biāo)準(zhǔn)RTD精度
表3. ASTM E-1137的標(biāo)準(zhǔn)RTD精度
RTD電阻值的計算公式為:
RTD電阻 = RTD0
(1 + T α)
其中:
RTD電阻 = T下的電阻值
RTD0= 0°C下的電阻值
T = 環(huán)境溫度
α = 0.00385 Ω/Ω/°C,DIN Std 43760-1980和IEC 751-1983定義的溫度系數(shù)
RTD電阻在0°C (1000 Ω)至100°C (1385 Ω)范圍內(nèi)變化,產(chǎn)生的電壓信號范圍為210 mV至290 mV,激勵電流為210 µA。
精密5 kΩ電阻產(chǎn)生作為外部基準(zhǔn)電壓源的1.05 V電壓。當(dāng)增益為1時,模擬輸入范圍為±1.05 V (±VREF/G)。該架構(gòu)形成一種比率式配置。 激勵電流值的變化不會影響系統(tǒng)精度。
盡管100 Ω Pt RTD十分常見,也可指定其他電阻(200 Ω、500 Ω、1000 Ω等)和材料(鎳、銅、鎳鐵)。本應(yīng)用使用一個1 kΩ DIN 43760 A類RTD,用于實現(xiàn)pH傳感器的溫度補(bǔ)償功能。 1000 Ω RTD對線路電阻誤差不如100 Ω RTD敏感度。
采用一條2線連接,如圖3所示。在RTD引腳上施加恒定電流,同時測量通過RTD本身的電壓。測量器件是AD7793,該器件表現(xiàn)出高輸入電阻和低輸入偏置電流。該方案的誤差源是引腳電阻、AD7793所產(chǎn)生恒定電流源的穩(wěn)定性以及輸入放大器中的輸入阻抗和/或偏置電流及相應(yīng)的漂移。
圖3. 2線鉑RTD連接(簡化原理圖:未顯示所有連接和去耦)
消除線路電阻誤差的另一種可能性是3線RTD配置,詳見電流筆記CN-0287。
輸出編碼
任一通道上輸入電壓的輸出代碼為:
其中:
AIN為模擬輸入電壓。
GAIN為儀表放大器設(shè)置。
N = 24
EVAL-SDP-CB1Z系統(tǒng)演示平臺板和PC處理AD7793輸出的數(shù)據(jù)。
數(shù)字和電源隔離
ADuM5401隔離ADC數(shù)字信號,同時為電路提供經(jīng)隔離穩(wěn)壓的3.3 V電源。ADuM5401 (VDD1)的輸入應(yīng)在3.0 V和3.6 V之間。要注意ADuM5401的布局,以盡量減少EMI/RFI問題。有關(guān)更多詳情,請參考AN-1109應(yīng)用筆記:iCoupler器件的輻射控制建議。
系統(tǒng)校準(zhǔn)
AD7793的AIN3(+)輸入用于測量精密5 kΩ 0.1%電阻上的電壓降。為了精確測量RTD電阻,必須考慮IOUT2電流的±5%變化范圍。在此基礎(chǔ)上,將該電壓除以5 kΩ,從而求得IOUT2確切電流值。RTD電阻則通過用RTD中的電壓除以IOUT2確切電流值來計算。
利用如圖4所示兩點校準(zhǔn)程序來校準(zhǔn)EVAL-CN0326-PMDZ評估軟件中的pH計。
圖4. 評估軟件校準(zhǔn)設(shè)置窗口
用戶需要至少使用兩種緩沖溶液,其中,用一種值為pH-7的中性pH緩沖溶液來消除pH探針和系統(tǒng)導(dǎo)致的失調(diào)。中性緩沖溶液可以用來設(shè)置第一個校準(zhǔn)點。第一種緩沖溶液的pH值取決于需要測量的溶液的pH值。在測量堿性基液時,可以使用pH-10緩沖溶液;在測量酸性溶液時,可使用pH-4緩沖溶液。為了提高測量的精度,可以實施三點校準(zhǔn)。其方法是在第2步和第3步使用兩組不同的緩沖溶液,如圖4所示,其中,pH-7溶液用來消除失調(diào)。
軟件包括NIST推薦的緩沖溶液清單。清單中描述的每種緩沖溶液都有自己的溫度系數(shù),范圍在0°C至95°C之間,可以在Radiometer Analytical出版的《pH理論與實踐》一書中找到。軟件利用該表將來自pH探針的mV輸入關(guān)聯(lián)至與讀取自RTD傳感器的溫度讀數(shù)相對應(yīng)的正確pH值,并利用線性插值法來填充表中空白。用戶可以選擇通過單擊如圖4
所示綠色按鈕,使能/禁用連續(xù)溫度補(bǔ)償選項。
用于pH傳感器校準(zhǔn)的緩沖溶液在市場中很常見。也可使用NIST認(rèn)證的其他pH參比溶液來校準(zhǔn)。由于市場上有多種緩沖溶液可供選擇,因此,軟件同時為用戶提供了一個選項,可以使用所需要的NIST認(rèn)證pH參比溶液進(jìn)行校準(zhǔn),如圖4所示。
軟件同時還為用戶提供了一個使用其他RTD電阻值的選項,但其默認(rèn)值設(shè)為1000 Ω。
系統(tǒng)噪聲考慮因素
如果輸出數(shù)據(jù)速率為16.7 Hz且增益為1,則AD7793的rms噪聲等于1.96 μV(噪聲折合到輸入端,來自AD7793數(shù)據(jù)手冊)。峰峰值噪聲等于:
6.6 × RMS 噪聲 = 6.6 × 1.96 µV = 12.936 µV
如果pH計的靈敏度為59 mV/pH,則pH計能測量的無噪聲分辨度pH水平為
12.936 μV / (59 mV/pH) = 0.000219 pH
其中只包括AD7793的噪聲貢獻(xiàn)。實際系統(tǒng)結(jié)果見下一節(jié)。
測試數(shù)據(jù)與結(jié)果
全部數(shù)據(jù)捕獲操作都通過CN0326 LabVIEW評估軟件實現(xiàn)。用一個Yokogawa GS200精密電壓源來模擬pH傳感器的輸入。通過以1 mV增量在−420 mV至+420 mV范圍內(nèi)掃描精密電壓,EVAL-CN0326-PMDZ能根據(jù)用戶自定義的校準(zhǔn)選項捕獲數(shù)據(jù)。
AD8603緩沖器和AD7793在實際系統(tǒng)中的峰峰值噪聲的確定方法是,短接pH探針BNC連接器,并采集1000個采樣。如圖5中所直方圖所示,代碼分布約為500個代碼,相當(dāng)于峰峰值噪聲為31.3 µV,等效pH讀數(shù)分布為0.00053 pH峰峰值。
圖5. 輸出代碼分布直方圖(AD7793輸入引腳短接在一起)
測試系統(tǒng)時將三個不同電阻與ADC輸入串聯(lián),以仿真高阻抗玻璃電極的不同阻抗。同時對系統(tǒng)進(jìn)行了校準(zhǔn),結(jié)果得到60 mV/pH。據(jù)圖6,線性誤差隨仿真玻璃電極阻抗的增加而增加。圖6同時顯示,在整個仿真pH輸出電壓范圍內(nèi),對于200 MΩ的pH探針阻抗,線性誤差小于0.5%。
圖6. pH傳感器仿真輸出電壓(及關(guān)聯(lián)線性誤差圖)與ADC輸出pH讀數(shù)的關(guān)系(所示探針電阻為1 MΩ、100 MΩ和200 MΩ)
測試數(shù)據(jù)以圖7所示評估板采集。針對該系統(tǒng)的完整文檔可以在CN-0326設(shè)計支持包中找到。
圖 7. EVAL-CN0326-PMDZ板的照片
常見變化
其他合適的ADC有AD7792和AD7785,這兩款器件具有與AD7793相同的特性組合, 但AD7792為16位ADC,AD7785為20位ADC。
AD8607緩沖放大器采用8引腳MSOP封裝。這是一款雙通道微功耗軌到軌輸入/輸出放大器,與AD8603屬于同一系列。ADuM5401的其他系列包括多種通道配置,如ADuM5402/ADuM5403 /ADuM5404,同時提供4個獨(dú)立隔離通道。
電路評估與測試
本電路采用EVAL-CN0326-PMDZ電路板、EVAL-SDP-CB1Z系統(tǒng)演示平臺(SDP)評估板和SDP-PMD-IB1Z(一款針對EVAL-SDP-CB1Z的PMOD轉(zhuǎn)接板)。SDP和SDP-PMD-IB1Z板具有120引腳的對接連接器,可以快速完成設(shè)置并評估電路性能。為了使用SDP-PMD-IB1Z和SDP評估EVALCN0326-PMDZ板,通過一個間距為100密爾、面積為25平方密爾的標(biāo)準(zhǔn)直角引腳-接頭連接器把EVAL-CN0326-PMDZ連接至SDP-PMD-IB1Z。
設(shè)備要求
需要以下設(shè)備:
• 帶USB端口的Windows® XP、Windows® Vista(32位)或Windows® 7(32位)PC
• EVAL-CN0326-PMDZ電路評估板
• EVAL-SDP-CB1Z電路評估板
• SDP-PMD-IB1Z SDP轉(zhuǎn)接板
• CN-0326評估軟件
• 電源: 6 V壁式或同等電源適配器
• Yokogawa 2000精密直流電源或等效電源
開始使用
將CN-0326評估軟件光盤放進(jìn)PC的光盤驅(qū)動器,加載評估軟件。打開“我的電腦”,找到包含評估軟件光盤的驅(qū)動器,打開Readme文件。按照Readme文件中的說明安裝和使用評估軟件。
設(shè)置
CN0326評估套件包括一張光盤,其中含有自安裝軟件。該軟件兼容Windows® XP (SP2)和Vista(32位和64位)。如果安裝文件未自動運(yùn)行,您可以運(yùn)行光盤中的setup.exe文件。請先安裝評估軟件,再將評估板和SDP板連接到PC的USB端口,確保PC能夠正確識別評估系統(tǒng)。
1. 光盤文件安裝完畢后,按照“電源配置”部分所述為SDP-PMD-IB1Z評估板接通電源。把SDP板(通過連接器A)接至SDP-PMD-IB1Z評估板,然后用隨附電纜將其接至用于評估的PC的USB端口。
2. 將EVAL-CN0326-PMDZ的12引腳直角公引腳接頭連接至SDP-PMD-IB1Z的12引腳直角母引腳接頭。
3. 在運(yùn)行圖9所示程序之前,將pH探針的BNC端子和RTD傳感器連接至EVAL-CN0326-PMDZ的端子插孔中。
4. 在接好并打開所有外設(shè)和電源之后,在圖9所示圖形用戶界面上單擊Connect(連接)。當(dāng)PC成功檢測到評估系統(tǒng)時,即可使用圖9所示軟件對EVAL-CN0326-PMDZ電路板進(jìn)行評估。
功能框圖
測試設(shè)置的功能框圖如圖8所示。該測試設(shè)置應(yīng)按圖中所示方式連接。主軟件窗口的屏幕截圖如圖9所示。
圖8. pH傳感器測試設(shè)置功能框圖
圖9. 評估軟件主窗口
電源配置
SDP-PMD-IB1Z必須采用6 V直流電源,其跳線JP1應(yīng)設(shè)為3.3 V,用于驅(qū)動EVAL-CN0326-PMDZ。
測試
用Agilent E3631A和Yokogawa GS200精密電壓來仿真?zhèn)鞲衅鬏敵觥okogawa的負(fù)端子連接至pH傳感器所用ADC的負(fù)端子。正端子與電阻串聯(lián),接至ADC的正端子,如圖8所示。Yokogawa產(chǎn)生±420 mV電壓,然后仿真pH傳感器輸出,隨后改變串聯(lián)電阻值,以仿真pH探針的玻璃電極的阻抗,如圖8所示。
用CN-0326評估軟件來捕獲來自EVAL-CN0326-PMDZ電路板的數(shù)據(jù),所用設(shè)置如圖8所示。有關(guān)軟件使用方法的詳細(xì)信息可在CN-0326軟件用戶指南中找到。
推薦閱讀:
特別推薦
- AMTS 2025展位預(yù)訂正式開啟——體驗科技驅(qū)動的未來汽車世界,共迎AMTS 20周年!
- 貿(mào)澤電子攜手安森美和Würth Elektronik推出新一代太陽能和儲能解決方案
- 功率器件熱設(shè)計基礎(chǔ)(六)——瞬態(tài)熱測量
- 貿(mào)澤開售Nordic Semiconductor nRF9151-DK開發(fā)套件
- TDK推出用于可穿戴設(shè)備的薄膜功率電感器
- 日清紡微電子GNSS兩款新的射頻低噪聲放大器 (LNA) 進(jìn)入量產(chǎn)
- 中微半導(dǎo)推出高性價比觸控 MCU-CMS79FT72xB系列
技術(shù)文章更多>>
- 意法半導(dǎo)體推出首款超低功耗生物傳感器,成為眾多新型應(yīng)用的核心所在
- 是否存在有關(guān) PCB 走線電感的經(jīng)驗法則?
- 智能電池傳感器的兩大關(guān)鍵部件: 車規(guī)級分流器以及匹配的評估板
- 功率器件熱設(shè)計基礎(chǔ)(八)——利用瞬態(tài)熱阻計算二極管浪涌電流
- AHTE 2025展位預(yù)訂正式開啟——促進(jìn)新技術(shù)新理念應(yīng)用,共探多行業(yè)柔性解決方案
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
單向可控硅
刀開關(guān)
等離子顯示屏
低頻電感
低通濾波器
低音炮電路
滌綸電容
點膠設(shè)備
電池
電池管理系統(tǒng)
電磁蜂鳴器
電磁兼容
電磁爐危害
電動車
電動工具
電動汽車
電感
電工電路
電機(jī)控制
電解電容
電纜連接器
電力電子
電力繼電器
電力線通信
電流保險絲
電流表
電流傳感器
電流互感器
電路保護(hù)
電路圖