你的位置:首頁 > 測試測量 > 正文

詳細設計:如何解決正弦波逆變器瞬態(tài)的共同導通問題

發(fā)布時間:2013-10-15 責任編輯:sherryyu

【導讀】關(guān)于逆變器的設計有很多方面需要大家考慮到,這里說的是一種大家往往容易忽略的問題,一種瞬態(tài)過程很難捕捉的現(xiàn)象,就是三相正弦波逆變器瞬中瞬態(tài)共同導通的問題。本文針對三相正弦波逆變器瞬態(tài)的共同導通問題給出了詳細的設計方法,雖然電路相對復雜,電路成本略高于其他解決方法,但是卻是最有效的。

在三相正弦波逆變器瞬中瞬態(tài)共同導通往往是被忽略的問題,因為瞬態(tài)過程很難捕捉。

以半橋變換器為例,其典型驅(qū)動電路如下圖a)所示,理想的柵極電壓波形如下圖(b)所示。

其典型驅(qū)動電路如下圖a)所示,理想的柵極電壓波形如下圖(b)所示。

但是,在實際測試中的柵極電壓波形則如下圖所示。

實際測試中的柵極電壓波形

圖中,圓圈處的電壓尖峰就是其中一個MOSFET開通時,引起處于關(guān)閉狀態(tài)的另一個MOSFET的柵極電壓尖峰。如果這個電壓尖峰超過MOSFET的導通閾值電壓(特別是在結(jié)溫較高時,閾值電壓下降到常溫的2/3),原處于關(guān)斷的MOSFET將被觸發(fā)導通,就會產(chǎn)生橋臂的兩個MOSFET瞬態(tài)共同導通現(xiàn)象,即使僅導通數(shù)十納秒也很可能損壞MOSFET。由于使MOSFET損壞的時刻是隨機的,故通常很難找到故障的真正原因。

產(chǎn)生這種現(xiàn)象的根本原因是MOSFET漏極電壓迅速上升,并產(chǎn)生電容電流,通過MOS-FET的反向傳輸電容與輸入電容分壓,在MOSFET的柵一源極間產(chǎn)生電壓。

1、瞬態(tài)共同導通產(chǎn)生的原因與分析

可以通過MOSFET的動態(tài)模型進行分析,MOSFET的動態(tài)模型如下圖所示。

MOSFET的動態(tài)模型

圖中,Cgs、Cgd、Cds、Rg分別為MOSFET內(nèi)部的的柵/源電容、柵/漏電容、輸出電容和MOSFET的柵極體電阻。

[page]

在VF1開通階段,盡管VF2處于關(guān)斷狀態(tài),VF2的寄生二極管導通續(xù)流。由于VF1的開通,VF2的漏極電壓急速上升,這個高幅值的dv/dt將通過VF2的寄生參數(shù)對VF2的柵極電壓造成影響,其等效電路如下圖所示。

等效電路

圖中的Rext為驅(qū)動電路內(nèi)阻和驅(qū)動電路與MOSFET間串聯(lián)電阻之和。

由于MOSFET在開通時并不能立即導通,因此可認為是一個線性上升的函數(shù)。這一階段的等效電路如下圖(a)和下圖(b)所示,同時可以認為VF2的柵極電壓為O。

一階段的等效電路

圖(b)的等效電路變?yōu)橐粋€簡單的RC回路,其節(jié)點和回路方程為

其節(jié)點和回路方程

解式(18-8)的微分方程,開通過程完成時幅值最大,即t=Tm時,其Vgsmax為

Vgsmax

很顯然,Vgsmax的幅值為V通過Cgd、Cgs所得到的分壓值。

當C.dv/dt引起的柵極電壓超過了VF2的導通閾值電壓,在VF1開通時,VF2也將開通。這樣,輸入電源將經(jīng)過VF1、VF2流過一個大的穿通電流,同時,VF1還承擔負載電流。

這樣,VF1、VF2的功耗增加,又導致結(jié)溫升高,使整個電源的效率下降,甚至會損壞MOSFET。

[page]
解決方案

綜上所述,需要采取措施消除由于C.dv/dt造成的誤導通。其基本方法為:盡可能地采用Crss/Ciss比值小的MOSFET;降低Rt. (Cgdd+Cgs)時間常數(shù),即減小Rt的阻值;減緩MOS-FET漏極電壓的上升速率;采用負極性電壓維持MOSFET的關(guān)斷,將C.dv/dt所產(chǎn)生的電壓尖峰施加負的初始電壓,使其峰值不超過MOSFET的導通閾值電壓Vth。

采用Crss/Ciss比值小的MOSFET

實際上,早期MOSFET的Cgd/(Cgd+Cgs)的比值往往小于Vth/Vm的比值,如400V/10A的IRF740,其Cgd為 120pF;Cgs為1400pF;Cgd/(Cgd+Cgs)為0.0789,這個數(shù)值遠高于IRF740的3.5V的導通閾值電壓與180~200V 峰值漏極電壓變化值的比值。因此在驅(qū)動速度極快時,引起IRF740誤導通的柵極電壓最高可以達到約14V。如果不加以限制,誤導通將是必然的。

如果選用近幾年問世的低柵極電荷的MOSFET,這種情況將大大改善,如ST的STP12NM50的Cgd為20pF,Cgs為 lOOOpF,Cgd/(Cgd+Cgs)為0.0196,約為Vth/Vm,即使在快速驅(qū)動條件下也不會產(chǎn)生誤導通現(xiàn)象。因此,選擇性能優(yōu)異的 MOSFET是第一選擇。

也可以采用加大MOSFET柵一源間外加電容的方式減小Crss/Ciss比值,但是這樣將降低MOSFET的開關(guān)速度,增加開關(guān)損耗。這種方式僅限于早期的MOSFET橋式變換器的應用,從提高變換器效率角度考慮,一般不推薦采用。

采用高導通電壓閾值的MOSFET和雙極性電壓驅(qū)動

提高MOSFET的導通電壓閾值也是抑制或消除MOSFET誤導通的一個好辦法。如果將常溫導通閾值電壓從3.SV提高到4~4.5V,則MOSFET 誤導通的可能性就會大大降低。對于耐壓在400V以上的MOSFET,比較高的導通閾值電壓一般不會引起MOSFET損耗的增加。

在功率較大的橋式變換器的應用中經(jīng)常采用雙極性電壓驅(qū)動,即在MOSFET關(guān)斷期間,MOSFET柵極一源極電壓保持在負極性電壓值。這樣,MOSFET誤導通就從原來MOSFET本身的導通閾值電壓變?yōu)閷ㄩ撝惦妷杭迂撈秒妷?。例如,采?15V關(guān)斷電壓值,則令MOSFET誤導通的電壓至少要達到18.5V,這是幾乎不可能達到的干擾電壓值。下圖所示的實測柵極電壓波形證實了這一點。

實測柵極電壓波形

從圖中可以看到,上圖形中的誤導通電壓值接近4.5V,已經(jīng)超過MOSFET的導通電壓閾值,出現(xiàn)瞬態(tài)共同導通現(xiàn)象。在圖波形中,僅有不到1V的電壓尖峰,甚至可以完全消除這個尖峰。其原因是低驅(qū)動回路阻抗與負電壓的共同作用強有力地抑制了柵一源極間的dv/dt和電壓幅值。

因此,即使采用-5V甚至-2V的關(guān)斷偏置電壓,也可以確保消除瞬態(tài)共同導通想像。

這種解決方案的缺點是電路相對復雜,電路成本略高于其他解決方案。但是這種解決方案是最有效的。

相關(guān)閱讀:

 網(wǎng)友熱議:光伏逆變器并網(wǎng)方式探討
http://forexsooq.com/power-art/80021486
教你如何六個步驟打造簡易工頻小功率逆變器
http://forexsooq.com/motor-art/80021600

要采購開關(guān)么,點這里了解一下價格!
特別推薦
技術(shù)文章更多>>
技術(shù)白皮書下載更多>>
熱門搜索
?

關(guān)閉

?

關(guān)閉