你的位置:首頁(yè) > 測(cè)試測(cè)量 > 正文

電源應(yīng)用散熱的仿真

發(fā)布時(shí)間:2010-12-21

中心議題:
  • 電源的散熱管理
  • IC與封裝散熱仿真
解決方案:
  • 封裝類(lèi)型(packageproduct)和PCB相互作用
  • PCB與模塊外殼的實(shí)施
散熱仿真是開(kāi)發(fā)電源產(chǎn)品以及提供產(chǎn)品材料指南一個(gè)重要的組成部分。優(yōu)化模塊外形尺寸是終端設(shè)備設(shè)計(jì)的發(fā)展趨勢(shì),這就帶來(lái)了從金屬散熱片向PCB覆銅層散熱管理轉(zhuǎn)換的問(wèn)題。當(dāng)今的一些模塊均使用較低的開(kāi)關(guān)頻率,用于開(kāi)關(guān)模式電源和大型無(wú)源組件。對(duì)于驅(qū)動(dòng)內(nèi)部電路的電壓轉(zhuǎn)換和靜態(tài)電流而言,線性穩(wěn)壓器的效率較低。

隨著功能越來(lái)越豐富,性能越來(lái)越高,設(shè)備設(shè)計(jì)也變得日益緊湊,這時(shí)IC級(jí)和系統(tǒng)級(jí)的散熱仿真就顯得非常重要了。

一些應(yīng)用的工作環(huán)境溫度為70到125C,并且一些裸片尺寸車(chē)載應(yīng)用的溫度甚至高達(dá)140C,就這些應(yīng)用而言,系統(tǒng)的不間斷運(yùn)行非常重要。進(jìn)行電子設(shè)計(jì)優(yōu)化時(shí),上述兩類(lèi)應(yīng)用的瞬態(tài)和靜態(tài)最壞情況下的精確散熱分析正變得日益重要。

散熱管理

散熱管理的難點(diǎn)在于要在獲得更高散熱性能、更高工作環(huán)境溫度以及更低覆銅散熱層預(yù)算的同時(shí),縮小封裝尺寸。高封裝效率將導(dǎo)致產(chǎn)生熱量組件較高的集中度,從而帶來(lái)在IC級(jí)和封裝級(jí)極高的熱通量。

系統(tǒng)中需要考慮的因素包括可能會(huì)影響分析器件溫度、系統(tǒng)空間和氣流設(shè)計(jì)/限制條件等其他一些印刷電路板功率器件。散熱管理要考慮的三個(gè)層面分別為:封裝、電路板和系統(tǒng)(請(qǐng)參見(jiàn)圖1)。

圖1IC封裝中典型的熱傳遞路徑

低成本、小外形尺寸、模塊集成和封裝可靠性是選擇封裝時(shí)需要考慮的幾個(gè)方面。由于成本成為關(guān)鍵的考慮因素,因此基于引線框架的散熱增強(qiáng)封裝正日益受到人們的青睞。這種封裝包括內(nèi)嵌散熱片或裸露焊盤(pán)和均熱片型封裝,設(shè)計(jì)旨在提高散熱性能。在一些表面貼裝封裝中,一些專用引線框架在封裝的每一面均熔接幾條引線,以起到均熱器的作用。這種方法為裸片焊盤(pán)的熱傳遞提供了較好的散熱路徑。

IC與封裝散熱仿真

散熱分析要求詳細(xì)、準(zhǔn)確的硅芯片產(chǎn)品模型和外殼散熱屬性。半導(dǎo)體供應(yīng)商提供硅芯片IC散熱機(jī)械屬性和封裝,而設(shè)備制造商則提供模塊材料的相關(guān)信息。產(chǎn)品用戶提供使用環(huán)境資料。

這種分析有助于IC設(shè)計(jì)人員對(duì)電源FET尺寸進(jìn)行優(yōu)化,以適用于瞬態(tài)和靜態(tài)運(yùn)行模式中的最壞情況下的功耗。在許多電源電子IC中,電源FET都占用了裸片面積相當(dāng)大的一部分。散熱分析有助于設(shè)計(jì)人員優(yōu)化其設(shè)計(jì)。

選用的封裝一般會(huì)讓部分金屬外露,以此來(lái)提供硅芯片到散熱器的低散熱阻抗路徑。模型要求的關(guān)鍵參數(shù)如下:

硅芯片尺寸縱橫比和芯片厚度;
功率器件面積和位置,以及任何發(fā)熱的輔助驅(qū)動(dòng)電路;
電源結(jié)構(gòu)厚度(硅芯片內(nèi)分散情況);
硅芯片連接至外露金屬焊盤(pán)或金屬突起連接處的裸片連接面積與厚度??赡馨闫B接材料氣隙百分比;
外露金屬焊盤(pán)或金屬突起連接處的面積和厚度;
使用鑄模材料和連接引線的封裝尺寸;
[page]
需提供模型所用每一種材料的熱傳導(dǎo)屬性。這種數(shù)據(jù)輸入還包括所有熱傳導(dǎo)屬性的溫度依賴性變化,這些傳導(dǎo)屬性具體包括:

硅芯片熱傳導(dǎo)性;
裸片連接、鑄模材料的熱傳導(dǎo)性;
金屬焊盤(pán)或金屬突起連接處的熱傳導(dǎo)性。

封裝類(lèi)型(packageproduct)和PCB相互作用

散熱仿真的一個(gè)至關(guān)重要的參數(shù)是確定焊盤(pán)到散熱片材料的熱阻,其確定方法主要有以下幾種:

多層FR4電路板(常見(jiàn)的為四層和六層電路板);
單端電路板;
頂層及底層電路板。

散熱和熱阻路徑根據(jù)不同的實(shí)施方法而各異:

連接至內(nèi)部散熱片面板的散熱焊盤(pán)或突起連接處的散熱孔。使用焊料將外露散熱焊盤(pán)或突起連接處連接至PCB頂層;

位于外露散熱焊盤(pán)或突起連接處下方PCB上的一個(gè)開(kāi)口,可以和連接至模塊金屬外殼的伸出散熱片基座相連;

利用金屬螺釘將散熱層連接至金屬外殼的PCB頂部或底部覆銅層上的散熱片。使用焊料將外露散熱焊盤(pán)或突起連接處連接至PCB的頂層;

另外,每層PCB上所用鍍銅的重量或厚度非常關(guān)鍵。就熱阻分析而言,連接至外露焊盤(pán)或突起連接處的各層直接受這一參數(shù)的影響。一般而言,這就是多層印刷電路板中的頂部、散熱片和底部層。

大多數(shù)應(yīng)用中,其可以是兩盎司重的覆銅(2盎司銅=2.8mils或71µm)外部層,以及1盎司重的覆銅(1盎司銅=1.4mils或35µm)內(nèi)部層,或者所有均為1盎司重的覆銅層。在消費(fèi)類(lèi)電子應(yīng)用中,一些應(yīng)用甚至?xí)褂?.5盎司重的覆銅(0.5盎司銅=0.7mils或18µm)層。

模型資料

仿真裸片溫度需要一張IC平面布置圖,其中包括裸片上所有的電源FET以及符合封裝焊接原則的實(shí)際位置。

每一個(gè)FET的尺寸和縱橫比,對(duì)熱分布都非常重要。需要考慮的另一個(gè)重要因素是FET是否同時(shí)或順序上電。模型精度取決于所使用的物理數(shù)據(jù)和材料屬性。

模型的靜態(tài)或平均功耗分析只需很短的計(jì)算時(shí)間,并且一旦記錄到最高溫度時(shí)便出現(xiàn)收斂。

瞬態(tài)分析要求功耗-時(shí)間對(duì)比數(shù)據(jù)。我們使用了比開(kāi)關(guān)電源情況更好的解析步驟來(lái)記錄數(shù)據(jù),以精確地對(duì)快速功率脈沖期間的峰值溫度上升進(jìn)行捕獲。這種分析一般費(fèi)時(shí)較長(zhǎng),且要求比靜態(tài)功率模擬更多的數(shù)據(jù)輸入。

該模型可仿真裸片連接區(qū)域的環(huán)氧樹(shù)脂氣孔,或PCB散熱板的鍍層氣孔。在這兩種情況下,環(huán)氧樹(shù)脂/鍍層氣孔都會(huì)影響封裝的熱阻(請(qǐng)參見(jiàn)圖2)。

散熱定義

Θja—表示周?chē)鸁嶙璧穆闫Y(jié)點(diǎn),通常用于散熱封裝性能對(duì)比。
Θjc—表示外殼頂部熱阻的裸片結(jié)點(diǎn)。
Θjp—表示外露散熱焊盤(pán)熱阻的芯片結(jié)點(diǎn),通常用于預(yù)測(cè)裸片結(jié)點(diǎn)溫度的較好參考。
Θjb—表示一條引線熱阻路徑下電路板的裸片結(jié)點(diǎn)。

圖2熱傳遞的熱阻路徑

PCB與模塊外殼的實(shí)施

數(shù)據(jù)表明需要進(jìn)行一些改動(dòng)來(lái)降低頂部層附近裸片上的FET最高溫度,以防止熱點(diǎn)超出150C的T結(jié)點(diǎn)(請(qǐng)參見(jiàn)圖3)。系統(tǒng)用戶可以選擇控制該特定序列下的功率分布,以此來(lái)降低裸片上的功率溫度。

圖3由散熱仿真得到的一個(gè)結(jié)果示例

散熱仿真是開(kāi)發(fā)電源產(chǎn)品的一個(gè)重要組成部分。此外,其還能夠指導(dǎo)您對(duì)熱阻參數(shù)進(jìn)行設(shè)置,涵蓋了從硅芯片F(xiàn)ET結(jié)點(diǎn)到產(chǎn)品中各種材料實(shí)施的整個(gè)范圍。一旦了解了不同的熱阻路徑之后,我們便可以對(duì)許多系統(tǒng)進(jìn)行優(yōu)化,以適用于所有應(yīng)用。
該數(shù)據(jù)還可以被用于確定降額因子與環(huán)境運(yùn)行溫度升高之間相關(guān)性的準(zhǔn)則。這些結(jié)果可用來(lái)幫助產(chǎn)品開(kāi)發(fā)團(tuán)隊(duì)開(kāi)發(fā)其設(shè)計(jì)。
要采購(gòu)焊盤(pán)么,點(diǎn)這里了解一下價(jià)格!
特別推薦
技術(shù)文章更多>>
技術(shù)白皮書(shū)下載更多>>
熱門(mén)搜索
?

關(guān)閉

?

關(guān)閉