圖1平衡差模電流返回電流的路徑。資料來源:Silicon Labs
你的位置:首頁 > EMC安規(guī) > 正文
如何在電動汽車設(shè)計最小化EMI?
發(fā)布時間:2021-01-13 來源:Charlie Ice,Silicon Labs的高級產(chǎn)品經(jīng)理 責任編輯:lina
【導讀】長期以來,電磁兼容(EMC)一直是電動汽車(EV)以及混合電動汽車和(HEV)系統(tǒng)關(guān)注的主要問題。傳統(tǒng)的內(nèi)燃機(ICE)車輛本質(zhì)上是機械的,而電子設(shè)備屬于機械動力裝置的配套。但是,EV和HEV卻大不相同。
長期以來,電磁兼容(EMC)一直是電動汽車(EV)以及混合電動汽車和(HEV)系統(tǒng)關(guān)注的主要問題。傳統(tǒng)的內(nèi)燃機(ICE)車輛本質(zhì)上是機械的,而電子設(shè)備屬于機械動力裝置的配套。但是,EV和HEV卻大不相同。
使用高壓電池,電動機和充電器將電能轉(zhuǎn)換為機械運動。這些高壓汽車系統(tǒng)很容易引起EMC問題。幸運的是,有多種減少隔離系統(tǒng)中的EMC的可靠技術(shù)。
EMI的基礎(chǔ)
在著手改善EMI之前,必須了解標準和測試中使用的基本術(shù)語。 EMC指的是設(shè)備的抗擾性和發(fā)射特征,而電磁干擾(EMI)僅關(guān)注設(shè)備的發(fā)射數(shù)值。CISPR 25是用于車輛的最常見的EMC標準,同時規(guī)定了EMI和抗擾性要求。
抗干擾能力是設(shè)備在存在干擾的情況下正確運行的能力。降低設(shè)備的EMI通??梢蕴岣咂鋵ν饨绲母蓴_,因此許多設(shè)計人員主要致力于降低EMI并讓抗擾性得到優(yōu)化。
在CISPR 25中,EMI分為傳導和輻射發(fā)射限值。兩者之間的區(qū)別非常直觀。EMI通過電源,信號線或其他線纜從一個設(shè)備傳導到另一個設(shè)備。另一方面,輻射EMI穿過電磁場傳播,從而干擾另一個設(shè)備。CISPR 25的EMI標準可確保在特定的測試條件下傳導和輻射的發(fā)射低于指定的閾值,以減少車輛系統(tǒng)彼此干擾的機會。
共模是最大麻煩
任何EMI討論的中心都是差模電流和共模電流。由于共模電流通常會引起EMI,因此絕大多數(shù)電路都使用差模電流工作。圖1說明了平衡差分信號,其中包括用于返回電流的專用導體。不幸的是,返回電流通常會找到一條替代的,更長的返回源的路徑,并產(chǎn)生一個共模電流。
圖1平衡差模電流返回電流的路徑。資料來源:Silicon Labs
共模電流在兩個路徑中造成不平衡,從而導致發(fā)射輻射,如圖2所示。幸運的是,可以通過一些設(shè)計改進來減少共模電流。然而,在探索這些方法之前,高壓車輛系統(tǒng)還存在其他隔離挑戰(zhàn)。
圖2平衡差分信號系統(tǒng)中顯示的共模電流。資料來源:Silicon Labs
隔離有助于減輕EMI
隔離,尤其是數(shù)字隔離,是推動電動汽車革命的基本技術(shù)之一。隔離設(shè)備允許跨越分隔高電壓域和低電壓域的高阻抗勢壘進行安全通信和信號發(fā)射。這些電源域的分離在兩個電路之間創(chuàng)建了高阻抗路徑,如圖3所示。
圖3隔離在系統(tǒng)中的兩個接地之間產(chǎn)生了很高的阻抗,有效地消除了彼此之間的電氣連接。資料來源:Silicon Labs
這種高阻抗路徑會給共模電流帶來一個問題,該共模電流是由僅在一側(cè)的電壓變化引起的。這些感應(yīng)電流必須找到返回其源極的路徑,并且由于存在隔離柵,它們所選擇的路徑通常較長,無法準確定義且具有高阻抗。這些路徑的較大環(huán)路面積導致輻射發(fā)射增加。值得慶幸的是,可以通過使用傳統(tǒng)的EMI實踐并針對數(shù)字隔離器進行一些修改來減少此問題和其他EMI問題。
降低EMI的三種簡單方法
方法1:選擇傳輸最小化的隔離器
數(shù)字隔離器利用CMOS技術(shù)創(chuàng)建隔離屏障并在隔離屏障上傳輸信號。使用高頻RF信號跨越這些屏障傳輸信號,在許多數(shù)字隔離器中,默認輸出配置確定何時激活RF發(fā)射機。如果隔離器發(fā)送的信號通常為高電平或低電平,則只需選擇匹配的默認輸出狀態(tài)將使傳輸最小化,從而降低EMI和功耗。
圖4對于所示的總線傳輸,默認的高數(shù)字隔離器具有較少的內(nèi)部RF傳輸。資料來源:Silicon Labs
圖4說明了通過SPI總線配置,默認的低隔離器和默認的高隔離器之間的區(qū)別。選擇適當?shù)臄?shù)字隔離器后,隔離設(shè)備周圍的組件現(xiàn)在可以針對EMI進行優(yōu)化。
方法2:選擇正確的旁路電容
幾乎每個數(shù)字隔離器都規(guī)定在電源引腳上使用旁路電容器,這會對系統(tǒng)的EMI性能產(chǎn)生巨大影響。旁路電容器通過在瞬態(tài)負載期間向器件提供額外的電流來幫助減少電源軌上的噪聲尖峰。此外,旁路電容器將交流噪聲對地短路,并防止其進入數(shù)字隔離器。
理想情況下,電容器的阻抗隨頻率降低。然而,在現(xiàn)實世界中,由于有效串聯(lián)電感(ESL),電容器的阻抗在自諧振頻率處開始增加。如圖5所示,降低電容器的ESL會提高自諧振頻率,并且電容器的阻抗開始增加。
圖5實際電容器模型以及非理想電容器中的阻抗與頻率的關(guān)系 資料來源:Silicon Labs
通常,較小尺寸的電容器(例如0402)具有較低的ESL,因為ESL取決于兩個電容器末端之間的距離。如圖6所示,反向幾何電容器提供了更低的ESL,盡管如此,即使采用最低的ESL,旁路電容器的放置也起著至關(guān)重要的作用。
圖6反向幾何電容器(右)提供的ESL低于標準電容器(左)。資料來源:Silicon Labs
方法3:優(yōu)化旁路電容器的位置
正確放置旁路電容器與選擇低ESL電容器一樣重要,因為PCB上的走線和過孔會引入串聯(lián)電感。跡線的串聯(lián)電感隨長度增加,因此理想的是短跡線和寬跡線。同樣,到數(shù)字隔離器的接地引腳的返回路徑的長度會增加額外的串聯(lián)電感。
只需改變電容器使其靠近電源和接地引腳,通常會減小返回路徑的長度。圖7說明了旁路電容器的理想位置和非理想位置。使用這些技術(shù)選擇低ESL電容器并優(yōu)化PCB設(shè)計將最大程度地降低旁路電容器的EMI。
圖7比較了旁路電容器的理想位置和非理想位置 資料來源:Silicon Labs
這些基本的降低EMI原理和技術(shù)為設(shè)計可滿足CISPR 25及更高要求的汽車系統(tǒng)提供了基礎(chǔ)。隨著越來越多的車輛系統(tǒng)添加復(fù)雜的電子設(shè)備以及電動汽車變得越來越先進,EMI仍將是主要關(guān)注的問題。
隨著電動汽車系統(tǒng)采用更高的電壓來提高效率,對隔離的需求還將繼續(xù)增長。通過考慮EMI并預(yù)先應(yīng)用最佳實踐,高壓隔離汽車系統(tǒng)將可以滿足當今和未來的EMI要求。
(來源:Silicon Labs,作者:Charlie Ice,Silicon Labs的高級產(chǎn)品經(jīng)理)
免責聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問題,請電話或者郵箱聯(lián)系小編進行侵刪。
特別推薦
- AMTS 2025展位預(yù)訂正式開啟——體驗科技驅(qū)動的未來汽車世界,共迎AMTS 20周年!
- 貿(mào)澤電子攜手安森美和Würth Elektronik推出新一代太陽能和儲能解決方案
- 功率器件熱設(shè)計基礎(chǔ)(六)——瞬態(tài)熱測量
- 貿(mào)澤開售Nordic Semiconductor nRF9151-DK開發(fā)套件
- TDK推出用于可穿戴設(shè)備的薄膜功率電感器
- 日清紡微電子GNSS兩款新的射頻低噪聲放大器 (LNA) 進入量產(chǎn)
- 中微半導推出高性價比觸控 MCU-CMS79FT72xB系列
技術(shù)文章更多>>
- 意法半導體推出首款超低功耗生物傳感器,成為眾多新型應(yīng)用的核心所在
- 是否存在有關(guān) PCB 走線電感的經(jīng)驗法則?
- 智能電池傳感器的兩大關(guān)鍵部件: 車規(guī)級分流器以及匹配的評估板
- 功率器件熱設(shè)計基礎(chǔ)(八)——利用瞬態(tài)熱阻計算二極管浪涌電流
- AHTE 2025展位預(yù)訂正式開啟——促進新技術(shù)新理念應(yīng)用,共探多行業(yè)柔性解決方案
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索