圖1. 5.0 Gbps眼圖。
揭露三個關(guān)鍵PHY性能指標(biāo),保證你的JESD204B鏈路質(zhì)量
發(fā)布時間:2020-05-09 責(zé)任編輯:lina
【導(dǎo)讀】隨著越來越多的數(shù)據(jù)轉(zhuǎn)換器中采用JESD204接口,必需更加關(guān)注數(shù)字接口的性能并予以優(yōu)化,重點不應(yīng)只放在數(shù)據(jù)轉(zhuǎn)換器的性能上。該標(biāo)準(zhǔn)的最初兩個版本,即2006年發(fā)布的JESD204 和2008年發(fā)布的JESD204A,其額定數(shù)據(jù)速率為3.125 Gbps。
OIF-Sx5-01.0針對最高3.125 Gbps的數(shù)據(jù)速率,詳細(xì)定義了電氣接口規(guī)范;CEI-6G-SR和CEI-11G-SR則分別對應(yīng)最高6.375 Gbps和12.5 Gbps的數(shù)據(jù)速率,并詳細(xì)定義了接口規(guī)范。高速數(shù)據(jù)速率需要更謹(jǐn)慎地從設(shè)計與性能方面考慮高速CML驅(qū)動器、接收器和互連網(wǎng)絡(luò),這些器件構(gòu)成JESD204B接口的物理層(PHY)。
若要評估JESD204B發(fā)射器的PHY性能,則需評估一些性能指標(biāo)。這些指標(biāo)包括共模電壓、差分峰峰值電壓、差分阻抗、差分輸出回波損耗、共?;夭〒p耗、發(fā)射器短路電流、眼圖模板和抖動。本文將討論三個關(guān)鍵的性能指標(biāo),眼圖、浴盆圖和直方圖,這些指標(biāo)通常用于評估發(fā)射器信號質(zhì)量。由于信號必須在接收器端被正確解碼,這些測量亦在接收器端完成。眼圖覆蓋輸出數(shù)據(jù)傳送的多路采集路徑以生成曲線,以多種參數(shù)表示鏈路質(zhì)量。可通過該曲線觀察JESD204B物理接口的許多特性,如阻抗不連續(xù)和不當(dāng)端接。這僅是評估物理層的一種方法。浴盆圖和直方圖是可用來評估JESD204B鏈路質(zhì)量的另外兩種重要性能指標(biāo)。測量單位間隔(UI)時,浴盆圖可直觀地表示針對給定眼圖開口寬度的比特誤差率(BER)。單位間隔是JESD204B物理層規(guī)范中指定的時間,表示數(shù)據(jù)傳輸?shù)臅r間間隔。第三個測量數(shù)據(jù)是直方圖,表示被測UI值變化的分布。
該測量數(shù)據(jù)還可表示被測信號的抖動量。直方圖、眼圖和浴盆圖可用于表示JESD204B接口物理層的整體性能。本例采用輸出數(shù)據(jù)速率為5.0 Gbps的JESD204B發(fā)射器。該數(shù)據(jù)速率下發(fā)射器的性能由OIF CEI-6G-SR規(guī)范詳細(xì)定義。
眼圖
圖1顯示5.0 Gbps數(shù)據(jù)速率的JESD204B發(fā)射器眼圖。理想波形與測量波形相疊加。理想情況下,傳輸應(yīng)在無過沖或欠沖的情況下瞬間完成,不產(chǎn)生任何振鈴。此外,決定UI的交叉點應(yīng)當(dāng)不存在抖動。如圖1所示,由于信號在非理想介質(zhì)中傳輸,存在損耗與不完全匹配的端接,因此在實際系統(tǒng)中不可能獲得理想波形。該眼圖在JESD204B系統(tǒng)的接收器端測得。在到達測量點之前,信號通過連接器、經(jīng)長度約為20 cm的差分傳輸線傳輸。這幅眼圖表示發(fā)射器和接收器之間的阻抗匹配較為合理,傳輸介質(zhì)良好且無較大的阻抗不連續(xù)產(chǎn)生。它確實存在一定的抖動,但不超過JESD204接口規(guī)范中的定義。該眼圖未發(fā)現(xiàn)任何過沖,但由于信號在傳輸介質(zhì)中的損耗,上升沿存在微量欠沖。這在信號通過連接器和20 cm差分傳輸線之后是可以預(yù)期的。當(dāng)信號存在少量抖動時,UI平均值似乎與大致為200 ps的預(yù)期UI值相匹配??傊?,該眼圖表示傳輸至接收器的信號良好,因此,理應(yīng)不存在恢復(fù)內(nèi)嵌的數(shù)據(jù)時鐘和正確解碼數(shù)據(jù)的問題。
圖1. 5.0 Gbps眼圖。
除端接阻抗不正確之外,圖2所示眼圖的傳輸介質(zhì)與圖1中所使用的相同。其造成的影響可從交叉點處以及非轉(zhuǎn)換區(qū)域的信號抖動量增加看出。許多采集的數(shù)據(jù)中存在整體幅度壓縮,造成眼圖開始閉合。這種信號惡化將使得接收器的BER增加;若眼圖的閉合程度超過接收器的容差,則可能導(dǎo)致接收器端的JESD204B鏈路丟失。
圖2. 5.0 Gbps眼圖 – 不當(dāng)端接。
圖3中的眼圖表示另一種非理想數(shù)據(jù)傳輸?shù)那闆r。在這種情況下,在發(fā)射器和接收器中間某點上顯示存在阻抗不連續(xù)(本例中為示波器)。由圖中可看出性能的惡化:眼圖開口趨向閉合,表示轉(zhuǎn)換點內(nèi)部區(qū)域正逐漸變小。數(shù)據(jù)上升沿和下降沿由于傳輸線上的阻抗不連續(xù)而嚴(yán)重惡化。阻抗不連續(xù)還會造成數(shù)據(jù)轉(zhuǎn)換點的抖動量增加。一旦眼圖閉合超過接收器解碼數(shù)據(jù)流的能力極限,則數(shù)據(jù)鏈路丟失。在圖3這種情況下,許多接收器將可能無法解碼數(shù)據(jù)流。
圖3. 5.0 Gbps眼圖 – 阻抗不連續(xù)。
浴盆圖
除了眼圖,浴盆圖也可提供JESD204B鏈路上串行數(shù)據(jù)傳輸?shù)挠杏眯畔?。浴盆圖測量的是BER(比特誤差率),隨著眼圖的時間推移,它是采樣點的函數(shù)。浴盆圖通過使采樣點在眼圖內(nèi)移動,并在每個點上測量BER所得。如圖4所示,采樣點越靠近眼圖中心,BER越低。隨著采樣點向眼圖的轉(zhuǎn)換點移動,BER也隨之增加。給定BER情況下,浴盆圖兩條斜線之間的距離便是特定BER的眼圖開口區(qū)域(本例中為10−12)。
圖4. 5.0 Gbps眼圖 – 浴盆圖測量。
浴盆圖還可提供信號中總抖動 (Tj)成分的信息。如圖5所示,當(dāng)測量點接近或等于轉(zhuǎn)換點時,抖動相對平坦,且主要屬于確定性抖動。和眼圖測量一樣,浴盆圖的測量基于JESD204B 5.0 Gbps 發(fā)射器,信號通過連接器以及約為20 cm的傳輸線后,對接收器進行測量所得。隨著測量點向眼圖開口中心移動,抖動機制的主要成分變?yōu)殡S機抖動。隨機抖動由大量的運算處理產(chǎn)生,量綱通常極小。典型來源為:熱噪聲、布線寬度的變化、散粒噪聲等。隨機抖動的概率密度函數(shù)(PDF)一般遵循高斯分布。另一方面,少量的運算處理產(chǎn)生的確定性抖動可能具有較大的量綱,并且可能互相關(guān)聯(lián)。確定性抖動的PDF是受限的,并且具有明確定義的峰峰值。它的形狀可能會改變,且通常不服從高斯分布。
圖5. 浴盆圖 – 抖動的組成成分。
圖4中討論的浴盆圖的展開圖形見圖6。在5.0 Gbps串行數(shù)據(jù)傳輸速率以及BER為10−12情況下,該圖表示接收器端眼圖開口約為0.6UI(單位間隔)。
圖6. 5.0 Gbps浴盆圖。
特別需要注意的是,類似圖6中所示的浴盆圖采用的是外推測量。用于捕捉數(shù)據(jù)的示波器根據(jù)一系列測量結(jié)果,經(jīng)外推得到浴盆圖。若需使用比特誤差率測試儀(BERT)并獲取足夠的測量數(shù)據(jù)以建立浴盆圖,則可能需耗時數(shù)小時以致數(shù)天,哪怕采用最新的高速運算測量設(shè)備。
和眼圖一樣,系統(tǒng)中不當(dāng)端接或阻抗不連續(xù)可通過浴盆圖發(fā)現(xiàn)。對比圖6,圖7和圖8中的浴盆圖兩端的斜率都較為平緩。此時,BER在 10−12 情況下的眼圖開口僅為0.5 UI,比良好情況下的0.6 UI低了10%。不當(dāng)端接和阻抗不連續(xù)導(dǎo)致系統(tǒng)產(chǎn)生大量隨機抖動。BER為 10−12時,浴盆圖兩側(cè)較為平緩的斜率以及收窄的眼圖開口表明系統(tǒng)中有大量隨機抖動。確定性抖動亦有少量上升。浴盆圖邊緣附近的斜率下降再次證明了這點。
圖7. 5.0 Gbps浴盆圖 – 不當(dāng)端接。
圖8. 5.0 Gbps浴盆圖 – 阻抗不連續(xù)。
直方圖
第三個有用的測量數(shù)據(jù)是直方圖。該圖表示數(shù)據(jù)傳輸時,所測得的轉(zhuǎn)換點之間的間隔分布。與眼圖及浴盆圖測量一樣,直方圖的測量基于JESD204B 5.0 Gbps發(fā)射器,信號通過連接器以及約為20 cm的傳輸線后,對接收器進行測量所得。圖9顯示5.0 Gbps速率時,系統(tǒng)表現(xiàn)相對較好的直方圖。該直方圖表示185 ps和210 ps間測得的間隔大致符合高斯分布。5.0 Gbps信號的預(yù)期間隔為200 ps,這表示圖中間隔大致分布在預(yù)期值兩側(cè)的−7.5%至+5%范圍內(nèi)。
圖9. 5.0 Gbps直方圖。
如圖10所示,當(dāng)產(chǎn)生不當(dāng)端接時,分布范圍變得更寬,將在170 ps和220 ps之間變動。它將使得分布百分比變?yōu)?minus;15%至+10%,是圖9中的兩倍。這些圖形表示信號存在隨機抖動,因為它們具有形似高斯分布的形狀。然而,這些圖形并非真正的高斯分布,這表示還至少存在少量的確定性抖動。
圖10 .5.0 Gbps直方圖 – 不當(dāng)端接。
T圖11所示直方圖表示傳輸線上存在阻抗不連續(xù)的情況。該圖形一點也不類似高斯分布,具有第二個較小的波峰。測量周期的平均值也發(fā)生了偏斜。與圖9和圖10中的波形不一樣,該波形的平均值不再是200 ps,它偏移至大約204 ps。形狀更似雙峰的分布表示系統(tǒng)中存在更多的確定性抖動。這是由于傳輸線路上存在阻抗不連續(xù),以及由此造成的預(yù)料中的影響。對間隔測量所得數(shù)值的范圍再次擴大,雖然不如不當(dāng)端接情況下擴大的多。該例中的范圍為175 ps至215 ps,約位于預(yù)測間隔兩側(cè)的−12.5%至+7.5%。雖然范圍不算很大,但再次強調(diào),其分布本質(zhì)上更接近雙峰分布。
圖11. 5.0 Gbps直方圖 – 阻抗不連續(xù)。
結(jié)論
可通過一些性能指標(biāo)評估JESD204B發(fā)射器的物理層性能。這些指標(biāo)包括共模電壓、差分峰峰值電壓、差分阻抗、差分輸出回波損耗、共?;夭〒p耗、發(fā)射器短路電流、眼圖模板和抖動。本文討論了可用來評估發(fā)射信號質(zhì)量的三個關(guān)鍵性能指標(biāo)。眼圖、浴盆圖和直方圖是用于評估JESD204B鏈路質(zhì)量的三大重要性能指標(biāo)。諸如不當(dāng)端接和阻抗不連續(xù)等系統(tǒng)問題會嚴(yán)重影響物理層的性能。這些影響可通過眼圖、浴盆圖和直方圖中顯示出來的性能惡化觀察到。重要的是保證良好的設(shè)計規(guī)則,從而正確端接系統(tǒng)并避免在傳輸介質(zhì)中產(chǎn)生阻抗不連續(xù)。系統(tǒng)問題可對數(shù)據(jù)傳輸產(chǎn)生明顯的不利影響,導(dǎo)致JESD204B的發(fā)射器和接收器之間數(shù)據(jù)鏈路故障。使用一定的技術(shù)避免這些問題將確保系統(tǒng)的正常工作。
免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問題,請聯(lián)系小編進行處理。
特別推薦
- AMTS 2025展位預(yù)訂正式開啟——體驗科技驅(qū)動的未來汽車世界,共迎AMTS 20周年!
- 貿(mào)澤電子攜手安森美和Würth Elektronik推出新一代太陽能和儲能解決方案
- 功率器件熱設(shè)計基礎(chǔ)(六)——瞬態(tài)熱測量
- 貿(mào)澤開售Nordic Semiconductor nRF9151-DK開發(fā)套件
- TDK推出用于可穿戴設(shè)備的薄膜功率電感器
- 日清紡微電子GNSS兩款新的射頻低噪聲放大器 (LNA) 進入量產(chǎn)
- 中微半導(dǎo)推出高性價比觸控 MCU-CMS79FT72xB系列
技術(shù)文章更多>>
- 意法半導(dǎo)體推出首款超低功耗生物傳感器,成為眾多新型應(yīng)用的核心所在
- 是否存在有關(guān) PCB 走線電感的經(jīng)驗法則?
- 智能電池傳感器的兩大關(guān)鍵部件: 車規(guī)級分流器以及匹配的評估板
- 功率器件熱設(shè)計基礎(chǔ)(八)——利用瞬態(tài)熱阻計算二極管浪涌電流
- AHTE 2025展位預(yù)訂正式開啟——促進新技術(shù)新理念應(yīng)用,共探多行業(yè)柔性解決方案
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
生產(chǎn)測試
聲表諧振器
聲傳感器
濕度傳感器
石英機械表
石英石危害
時間繼電器
時鐘IC
世強電訊
示波器
視頻IC
視頻監(jiān)控
收發(fā)器
手機開發(fā)
受話器
數(shù)字家庭
數(shù)字家庭
數(shù)字鎖相環(huán)
雙向可控硅
水泥電阻
絲印設(shè)備
伺服電機
速度傳感器
鎖相環(huán)
胎壓監(jiān)測
太陽能
太陽能電池
泰科源
鉭電容
碳膜電位器