你的位置:首頁(yè) > EMC安規(guī) > 正文
采用集成FET設(shè)計(jì)的EMI抑制技術(shù)
發(fā)布時(shí)間:2021-04-07 責(zé)任編輯:wenwei
【導(dǎo)讀】本系列文章的第 1 部分至第 4 部分詳細(xì)介紹了開關(guān)電源穩(wěn)壓器引起的傳導(dǎo)發(fā)射和輻射發(fā)射,包括噪聲產(chǎn)生機(jī)制、測(cè)量要求、頻率范圍、適用的測(cè)試限值、傳播模式和寄生效應(yīng)。在第 5 部分中,我將基于這一理論基礎(chǔ)介紹抑制電磁干擾 (EMI) 的實(shí)用電路技術(shù)。
一般來說,電路原理圖和印刷電路板 (PCB) 對(duì)于實(shí)現(xiàn)出色的 EMI 性能至關(guān)重要。第 3 部分重點(diǎn)強(qiáng)調(diào)通過謹(jǐn)慎的元器件選型和 PCB 布局盡量減小“功率回路”寄生電感的重要性。電源轉(zhuǎn)換器集成電路 (IC) 的封裝技術(shù)及其提供的 EMI 特定功能對(duì)此產(chǎn)生了巨大的影響。如第 2 部分所述,必須使用差模 (DM) 濾波方可將輸入紋波電流的幅值充分降低至滿足 EMI 合規(guī)性要求的水平。與此同時(shí),如果需要抑制約 10MHz 以上的發(fā)射,通常使用共模 (CM) 濾波。在高頻條件下,使用屏蔽也可以獲得優(yōu)異的結(jié)果。
本文主要介紹這些方面的內(nèi)容,專門聚焦于帶有集成功率 MOSFET 和控制器的轉(zhuǎn)換器解決方案,提供抑制 EMI 的實(shí)例和應(yīng)用指導(dǎo)。一般來說,轉(zhuǎn)換器應(yīng)在合理范圍內(nèi)超出傳導(dǎo) EMI 一定的裕度,為達(dá)到輻射限值預(yù)留空間。幸運(yùn)的是,多數(shù)減少傳導(dǎo)發(fā)射的步驟對(duì)于抑制輻射 EMI 同樣有效。
了解 EMI 的相關(guān)挑戰(zhàn)
DC/DC 轉(zhuǎn)換器中的 EMI 主要由其快速開關(guān)的電壓和電流特性所致。與轉(zhuǎn)換器的不連續(xù)輸入或輸出電流相關(guān)的 EMI 相對(duì)容易處理,但更大的問題是開關(guān)電壓 dv/dt 和電流 di/dt 中的諧波成分,以及與開關(guān)波形相關(guān)的振鈴。
圖 1 所示為存在噪聲的同步降壓轉(zhuǎn)換器的開關(guān) (SW) 電壓波形。振鈴頻率范圍為 50MHz 至 200MHz,具體取決于寄生效應(yīng)。此類高頻成分可以通過近場(chǎng)耦合傳播到輸入電源線、周邊元器件或輸出總線(如 USB 電纜)。體二極管反向恢復(fù)存在類似的問題,隨著恢復(fù)電流流入寄生回路電感,振鈴電壓升高。
圖 1:同步降壓轉(zhuǎn)換器在 MOSFET 導(dǎo)通和關(guān)斷開關(guān)轉(zhuǎn)換期間的開關(guān)節(jié)點(diǎn)電壓波形和等效電路
圖 2 的原理圖標(biāo)識(shí)了降壓轉(zhuǎn)換器電路的兩條重要回路。最大限度縮減電源回路的面積至關(guān)重要,原因是該參數(shù)與寄生電感和相關(guān) H 場(chǎng)傳播成正比。主要設(shè)計(jì)目標(biāo)是通過減小寄生電感最大程度提升寄生 LC 諧振電路的諧振頻率。此舉可以降低存儲(chǔ)的無(wú)功能量總值,減少開關(guān)電壓峰值過沖。
圖 2:簡(jiǎn)化的同步降壓轉(zhuǎn)換器原理圖(針對(duì) EMI 標(biāo)出了關(guān)鍵回路和走線)
在圖 2 所示的自舉電容回路中,高側(cè) MOSFET 的導(dǎo)通速度由一個(gè)標(biāo)記為 RBOOT 的可選串聯(lián)自舉電阻進(jìn)行控制。自舉電阻會(huì)改變驅(qū)動(dòng)電流瞬變率,降低 MOSFET 導(dǎo)通期間的開關(guān)電壓和電流轉(zhuǎn)換率。另一種方法是在 SW 和 GND 之間添加一個(gè)緩沖電路。同理,該緩沖電路應(yīng)根據(jù)每次開關(guān)轉(zhuǎn)換時(shí)的瞬態(tài)電流尖峰,占用最小的回路面積。當(dāng)然,緩沖電路和柵極電阻會(huì)增加開關(guān)功率損耗,需要在效率和 EMI 之間進(jìn)行權(quán)衡。如果效率和散熱性能同樣非常重要,則需要使用其他技術(shù)解決 EMI 相關(guān)的挑戰(zhàn)。
轉(zhuǎn)換器的 PCB 布局
表 1 至表 5 總結(jié)了通過優(yōu)化 PCB 布局及元器件排布削弱 DC/DC 轉(zhuǎn)換器 EMI 信號(hào)的基本準(zhǔn)則。我將在本文的后續(xù)部分提供一項(xiàng) PCB 布局案例研究,探討如何優(yōu)化降壓轉(zhuǎn)換器的 EMI 特性。
表 1:布線及元器件排布。
表 2:GND 平面設(shè)計(jì)。
表 3:輸入和輸出電容。
表 4.電感和開關(guān)節(jié)點(diǎn)布局。
表 5.EMI 管理。
EMI 輸入濾波器
圖 3 所示為典型的多級(jí) EMI 輸入濾波器。低頻和高頻部分可提供 DM 噪聲衰減,也可選擇 p 級(jí),通過 CM 扼流器提供 CM 衰減。標(biāo)記為 CBULK 的電解電容具有固有的串聯(lián)電阻 (ESR),可用于設(shè)置所需阻尼,降低轉(zhuǎn)換器輸入的有效品質(zhì)因子,保持輸入濾波器的穩(wěn)定性。
DM 電感的自諧振頻率 (SRF) 限制濾波器第一級(jí)可實(shí)現(xiàn)的高頻 DM 衰減。濾波器第二級(jí)通常至關(guān)重要,其使用鐵氧體磁珠在高頻條件下提供附加的 DM 衰減,此時(shí)額定阻抗通常為 100MHz。標(biāo)記為 CF1 和 CF2 的陶瓷電容可將噪聲分流到接地端。
圖 3:具有 DM 和 CM 級(jí)的三級(jí) EMI 輸入濾波器
DM 濾波器的電感一般設(shè)置為削弱基波和低頻諧波的值。應(yīng)使用盡可能小的電感來滿足低頻濾波要求,因?yàn)樵褦?shù)較多的大電感具有較高的等效并聯(lián)電容 (EPC),導(dǎo)致其 SRF 較高,影響其在高頻下的性能。
標(biāo)記為 LCM 的 CM 扼流器針對(duì) CM 電流提供較高的阻抗,其泄漏電感也可提供 DM 衰減。然而,在部分要求接地連接必須保持完好的應(yīng)用中,該元器件不適用,這些應(yīng)用需要更安靜的轉(zhuǎn)換器設(shè)計(jì),CM 扼流器不再是首選。
為了演示 CM 扼流器的效果,圖 4 展示了德州儀器 (TI) LM53603,這是一款采用雙層 PCB 的 36V、3A DC/DC 轉(zhuǎn)換器解決方案 [7]。該器件的功率級(jí)位于頂層,EMI 輸入濾波器則放置于底部。如圖 4 中的布局所示,濾波器附近的接地平面覆銅區(qū)可借助過孔縫合提供屏蔽效果。此外,在濾波器級(jí)以下的所有層中插入敷銅層切口,可避免 VIN 和 GND 走線之間產(chǎn)生寄生電容,從而為噪聲電流提供繞過 CM 扼流器的路徑并讓步于濾波器的阻抗特性。
圖 4:DC/DC 轉(zhuǎn)換器原理圖和 PCB 布局實(shí)施方案
圖 5 所示為國(guó)際無(wú)線電干擾特別委員會(huì) (CISPR) 25 針對(duì)圖 4 的轉(zhuǎn)換器設(shè)計(jì)在 150kHz 至 108MHz 之間進(jìn)行的傳導(dǎo)發(fā)射測(cè)量。我們提供了使用與不使用 CM 扼流器兩種情況下的測(cè)量結(jié)果。使用 Rohde & Schwarz 的頻譜分析儀,所得檢測(cè)器掃描結(jié)果的峰值和平均值分別以黃色和藍(lán)色表示。紅色限值圖象為 5 類峰值和平均值限值(峰值限值通常比平均值限值高出 20dB)。
圖 5:CISPR 25 在使用 CM 扼流器 (a) 與不使用 CM 扼流器 (b) 情況下進(jìn)行的傳導(dǎo) EMI 測(cè)量
金屬外殼屏蔽
另一種優(yōu)化高頻 EMI 性能的有效方式是添加金屬外殼屏蔽層,從而阻擋輻射電場(chǎng)。外殼通常由鋁制成,采用框架(敞開式)或封閉式設(shè)計(jì)實(shí)施方案。屏蔽外殼可覆蓋除 EMI 濾波器之外的所有功率級(jí)元器件,外殼與 PCB 上的 GND 相連,基本形成了一個(gè)帶有 PCB 接地平面的法拉第籠。
這使得從開關(guān)單元到 EMI 濾波器或長(zhǎng)輸入線連接(也用作天線)的輻射噪聲耦合顯著減少。當(dāng)然,這會(huì)產(chǎn)生額外的元器件和裝配成本,導(dǎo)致散熱管理和散熱測(cè)試的難度增加。鋁電解電容的外殼也可以提供電場(chǎng)屏蔽,為實(shí)現(xiàn)此目的,可在電路板上針對(duì)性地放置該電容。
DC/DC 轉(zhuǎn)換器案例研究
圖 6 為 60V、1.5A 單片式集成同步降壓轉(zhuǎn)換器電路的原理圖,該電路通過多項(xiàng)功能實(shí)現(xiàn)最佳 EMI 性能。該原理圖還顯示了一個(gè)兩級(jí) EMI 輸入濾波器級(jí),旨在滿足汽車或噪聲敏感型工業(yè)應(yīng)用的 EMI 規(guī)范。為了幫助實(shí)現(xiàn)最佳的 PCB 布局,原理圖中將高電流走線(VIN、PGND、SW 連接)、噪聲敏感型網(wǎng)絡(luò) (FB) 和高 dv/dt 電路節(jié)點(diǎn)(SW、BOOT)突出顯示。
圖 6:采用 EMI 優(yōu)化型封裝和引腳布局的 DC/DC 轉(zhuǎn)換器。內(nèi)置一個(gè)兩級(jí) EMI 輸入濾波器
a. 引腳布局設(shè)計(jì)
圖 6 所示的轉(zhuǎn)換器 IC 優(yōu)勢(shì)在于,其 VIN 和 PGND 采用對(duì)稱且均衡的引腳排布。該轉(zhuǎn)換器利用兩個(gè)并聯(lián)的輸入回路使寄生回路電感成功減半。上述回路在 PCB 布局中標(biāo)記為“IN1”和“IN2”,如圖 7 所示。兩個(gè)外殼尺寸為 0402 或 0603 的小型電容(在圖 6 中分別標(biāo)記為 CIN1 和 CIN3)放置在盡可能靠近 IC 的位置,最大限度減小輸入回路面積。兩個(gè)回路中的環(huán)流產(chǎn)生相反的磁矩,消除 H 場(chǎng)并降低有效電感。為了進(jìn)一步降低寄生電感,PCB 第 2 層(緊靠頂層電源電路的下方)的 IN1 和 IN2 回路下方設(shè)有返回電流的連續(xù)接地平面,可使場(chǎng)效應(yīng)自行消除。
在電感兩側(cè)各使用一個(gè)陶瓷輸出電容(COUT1 和 COUT2)同樣能夠優(yōu)化輸出電流回路。在輸出端引出兩個(gè)并聯(lián)的接地返回路徑可以將返回電流分成兩部分,有助于減弱“地彈反射”效應(yīng)。
圖 7:僅部署在 PCB 頂層的功率級(jí)布局
SW 引腳位于 IC 中心,因此輻射電場(chǎng)會(huì)由 IC 兩側(cè)相鄰的 VIN 和 PGND 引腳屏蔽。GND 平面覆銅區(qū)可對(duì)將 IC 的 SW 引腳連接到電感端子的多邊形覆層施加屏蔽。SW 和 BOOT 的單層布局意味著 PCB 的底側(cè)不會(huì)有 dv/dt 較高的過孔。這樣可以避免在 EMI 測(cè)試期間,電場(chǎng)與基準(zhǔn)接地平面耦合。
b. 封裝設(shè)計(jì)
與優(yōu)化的引腳排布類似,電源轉(zhuǎn)換器 IC 封裝設(shè)計(jì)也是改善 EMI 信號(hào)的關(guān)鍵屬性。例如,德州儀器 (TI) 的 HotRodÔ 封裝技術(shù)采用引線框上倒裝芯片 (FCOL) 的方式,規(guī)避了功率器件線焊導(dǎo)致封裝寄生電感過高的情況。如圖 8 所示,IC 以上下翻轉(zhuǎn)的形式放置,IC 上的銅柱(也稱為凸點(diǎn)或支柱)直接焊接到引線框架。這種構(gòu)造方法能夠提升密度并較薄的外型,因?yàn)槊總€(gè)引腳都與引線框架直接相連。從 EMI 角度來看,最重要的一點(diǎn)是,與傳統(tǒng)線焊封裝相比,HotRod 封裝降低了封裝的寄生電感。
圖 8:QFN 線焊封裝 (a) 和 HotRod FCOL (b) 封裝的結(jié)構(gòu)對(duì)比
HotRod 封裝不僅可以在開關(guān)換向(50MHz 至 200MHz 頻率范圍)期間減少振鈴,還可以降低導(dǎo)通和開關(guān)損耗。圖 9 所示為開關(guān)節(jié)點(diǎn)電壓振鈴隨之得到改善的情況。圖 8 所示為圖 6 中的轉(zhuǎn)換器在 150kHz 至 108MHz 下測(cè)得的傳導(dǎo)發(fā)射。測(cè)量結(jié)果符合 CISPR 25 5 類要求。
圖 9:使用傳統(tǒng)線焊封裝的轉(zhuǎn)換器 (a) 和 HotRod FCOL 轉(zhuǎn)換器 (b) 時(shí)的開關(guān)節(jié)點(diǎn)電壓波形
圖 10:CISPR 25 傳導(dǎo)發(fā)射測(cè)量結(jié)果,(a) 頻率范圍為 150kHz 至 30MHz,(b) 頻率范圍為 30MHz 至 108MHz
總結(jié)
在本文中,我討論了使用電源轉(zhuǎn)換器 IC 的 DC/DC 穩(wěn)壓器電路可以采用的 EMI 抑制技術(shù)。減弱 EMI 的 PCB 布局步驟包括盡量減小布局中的電流“熱回路”面積、避免阻斷電流路徑、采用具有內(nèi)部接地平面的四層 PCB 結(jié)構(gòu)實(shí)現(xiàn)屏蔽(屏蔽效果遠(yuǎn)超雙層 PCB),以及通過盡量減小開關(guān)節(jié)點(diǎn)覆銅區(qū)域面積來降低電場(chǎng)輻射耦合。
轉(zhuǎn)換器封裝類型是一項(xiàng)重要的選擇標(biāo)準(zhǔn),新一代器件的開關(guān)節(jié)點(diǎn)振鈴和引腳設(shè)計(jì)得到顯著提升,有助于實(shí)現(xiàn)最優(yōu)的電容放置方案。從輸入濾波的角度而言,抑制低頻噪聲(通常小于 10MHz)相對(duì)容易,使用傳統(tǒng)的 LC 濾波器級(jí)即可實(shí)現(xiàn)。然而,抑制高頻噪聲(10MHz 以上)通常需要額外使用 CM 扼流器和/或鐵氧體磁珠濾波器級(jí)。焊接到 PCB 接地平面的金屬外殼屏蔽層也能有效減輕高頻發(fā)射。
在本系列文章的下一部分中,我將探討使用控制器驅(qū)動(dòng)分立式功率 MOSFET 的 DC/DC 穩(wěn)壓器電路適用的 EMI 抑制技術(shù)。根據(jù) EMI 進(jìn)行分析,這些技術(shù)更具挑戰(zhàn)性。
免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問題,請(qǐng)聯(lián)系小編進(jìn)行處理。
推薦閱讀:
特別推薦
- AMTS 2025展位預(yù)訂正式開啟——體驗(yàn)科技驅(qū)動(dòng)的未來汽車世界,共迎AMTS 20周年!
- 貿(mào)澤電子攜手安森美和Würth Elektronik推出新一代太陽(yáng)能和儲(chǔ)能解決方案
- 功率器件熱設(shè)計(jì)基礎(chǔ)(六)——瞬態(tài)熱測(cè)量
- 貿(mào)澤開售Nordic Semiconductor nRF9151-DK開發(fā)套件
- TDK推出用于可穿戴設(shè)備的薄膜功率電感器
- 日清紡微電子GNSS兩款新的射頻低噪聲放大器 (LNA) 進(jìn)入量產(chǎn)
- 中微半導(dǎo)推出高性價(jià)比觸控 MCU-CMS79FT72xB系列
技術(shù)文章更多>>
- 意法半導(dǎo)體推出首款超低功耗生物傳感器,成為眾多新型應(yīng)用的核心所在
- 是否存在有關(guān) PCB 走線電感的經(jīng)驗(yàn)法則?
- 智能電池傳感器的兩大關(guān)鍵部件: 車規(guī)級(jí)分流器以及匹配的評(píng)估板
- 功率器件熱設(shè)計(jì)基礎(chǔ)(八)——利用瞬態(tài)熱阻計(jì)算二極管浪涌電流
- AHTE 2025展位預(yù)訂正式開啟——促進(jìn)新技術(shù)新理念應(yīng)用,共探多行業(yè)柔性解決方案
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
生產(chǎn)測(cè)試
聲表諧振器
聲傳感器
濕度傳感器
石英機(jī)械表
石英石危害
時(shí)間繼電器
時(shí)鐘IC
世強(qiáng)電訊
示波器
視頻IC
視頻監(jiān)控
收發(fā)器
手機(jī)開發(fā)
受話器
數(shù)字家庭
數(shù)字家庭
數(shù)字鎖相環(huán)
雙向可控硅
水泥電阻
絲印設(shè)備
伺服電機(jī)
速度傳感器
鎖相環(huán)
胎壓監(jiān)測(cè)
太陽(yáng)能
太陽(yáng)能電池
泰科源
鉭電容
碳膜電位器