本文轉(zhuǎn)載自致遠(yuǎn)電子。
你可能忽視的總線收發(fā)器接口電平問題
發(fā)布時(shí)間:2019-11-26 責(zé)任編輯:wenwei
【導(dǎo)讀】在總線通信中,總線設(shè)備中的MCU需要連接一個(gè)總線收發(fā)器接入到總線網(wǎng)絡(luò)中,如果MCU的供電電壓與收發(fā)器電壓不匹配時(shí),會(huì)出現(xiàn)什么情況?本文將以CAN總線為例從接口電平的角度為你解析電平匹配的重要性。
CMOS電平
現(xiàn)大部分?jǐn)?shù)字集成電路采用的是CMOS工藝,其接口的電平大致符合如下定義:
VIL<0.3Vcc;VIH>0.7Vcc;
VOL<0.1Vcc;VOH>0.9Vcc。
以常見的5V、3.3V系統(tǒng)為例,相應(yīng)的接口參數(shù)如表1。
表1 不同供電下的電平要求
注:表中數(shù)據(jù)僅為計(jì)算參考值,器件實(shí)際參數(shù)需參考相應(yīng)的數(shù)據(jù)手冊(cè)。
電平不匹配
為了確保兩個(gè)器件的信號(hào)可靠傳輸,必須保證:
● 驅(qū)動(dòng)器輸出的VOH(MIN)必須高于接收器輸入的VIH(MIN)。
● 驅(qū)動(dòng)器輸出的VOL(MAX)必須低于接收器輸入的VIL(MAX)。
● 驅(qū)動(dòng)器輸出的輸出電壓不得超過接收器輸入的I/O電壓容差。
當(dāng)兩個(gè)CMOS器件連接在一起時(shí),若供電電壓一致,信號(hào)傳輸不存在問題。若兩個(gè)器件供電電壓不一致,則會(huì)存在電平不匹配問題。
以3.3V器件與5V器件連接為例,會(huì)出現(xiàn)以下兩個(gè)問題:
● 5V器件輸入引腳可能無法識(shí)別3.3V器件輸出的高電平
如圖1,3.3V器件輸出VOH最大值3.3V也無法達(dá)到5V器件VIH的最小值3.5V,無法保證3.3V器件輸出的高電平被正確識(shí)別。由于器件設(shè)計(jì)有一定余量,在測(cè)試時(shí)可能仍可正常工作,但存在風(fēng)險(xiǎn),如出現(xiàn)器件電壓波動(dòng)時(shí),就會(huì)出現(xiàn)問題。
圖1 3.3V器件輸出,5V信號(hào)輸入
● 5V器件輸出高電平可能損壞3.3V器件輸入接口。
如圖2,5V器件輸出高電平信號(hào)遠(yuǎn)高于3.3V,若3.3V器件輸入引腳不支持5V電平輸入,則工作時(shí)會(huì)有電流灌入3.3V器件,嚴(yán)重會(huì)造成器件損壞。
圖2 5V信號(hào)輸出,3.3V信號(hào)輸入
隔離收發(fā)器選型
以CTM1051(A)M系列產(chǎn)品為例,其內(nèi)部采用的CMOS技術(shù)的芯片,引腳電平如圖3,符合CMOS電平標(biāo)準(zhǔn)。在選型時(shí),應(yīng)該針對(duì)不同的MCU選擇相應(yīng)型號(hào),才能杜絕因電平不匹配產(chǎn)生問題,若MCU為5V供電,應(yīng)選擇CTM1051M;若MCU為3.3V供電,則選擇CTM1051AM。
圖3 CTM1051(A)M引腳電平
實(shí)際案例
客戶使用于我司一款隔離CAN收發(fā)器模塊,已經(jīng)大批量出貨,但應(yīng)用中出現(xiàn)個(gè)別異?,F(xiàn)象。異常產(chǎn)品表現(xiàn)為CAN總線間歇性通訊故障。當(dāng)產(chǎn)品處于高溫環(huán)境時(shí)(如65℃),對(duì)其進(jìn)行重復(fù)上電,可復(fù)現(xiàn)通訊故障現(xiàn)象。
1、復(fù)現(xiàn)異常
將異常品置于65℃的烤箱中,并對(duì)以下信號(hào)進(jìn)行測(cè)試:MCU供電、TXD、CAN差分、CAN模塊供電。未出現(xiàn)異常時(shí),各點(diǎn)波形如圖4??梢钥吹?,MCU是3.3V供電,電壓穩(wěn)定在3.2V左右,CAN模塊供電穩(wěn)定在5.07V左右,CAN差分波形與TXD信號(hào)對(duì)應(yīng)無異常。
圖4 正常時(shí)波形
對(duì)異常板卡進(jìn)行重復(fù)上電,CAN總線出現(xiàn)大量錯(cuò)誤幀,問題復(fù)現(xiàn)。異常時(shí),各點(diǎn)波形如圖5,MCU供電電壓、CAN模塊供電電壓同時(shí)出現(xiàn)波動(dòng),并出現(xiàn)異常位。異常位出現(xiàn)時(shí),MCU供電下降到3.08V,CAN模塊供電上升至5.19V。
圖5 異常時(shí)波形
仔細(xì)觀察異常位波形,如圖6,發(fā)現(xiàn)TXD變?yōu)楦唠娖綍r(shí),CAN差分電平并未跟隨變化,而當(dāng)TXD再次出現(xiàn)一個(gè)小的噪聲尖峰時(shí),CAN差分電平才變?yōu)殡[性電平。結(jié)合此時(shí)MCU供電電壓下降,CAN模塊供電反而上升的情況,初步確定問題是因供電電壓波動(dòng),造成TXD高電平無法識(shí)別導(dǎo)致。
圖6 異常位波形
2、問題定位
因懷疑TXD電平無法識(shí)別,對(duì)CAN模塊的TXD高電平閥值電壓值進(jìn)行測(cè)試。不同輸入電壓下,測(cè)試數(shù)據(jù)如表3。
表3 異常品TXD高電平閥值電壓
從測(cè)試數(shù)據(jù)看出,在不同的環(huán)境溫度下,TXD高電平閥值電壓變化均不大。4.75V供電時(shí),閥值約2.91V;5V供電時(shí),閥值約3.06V;5.25V供電時(shí),閥值約3.2V。
如圖5,異常位出現(xiàn)時(shí),CAN模塊的供電為5.19V,此時(shí)TXD高電平閥值應(yīng)該約為3.17V,而MCU的供電僅為3.08V,IO輸出電壓無法達(dá)到3.17V,故無法識(shí)別高電平。當(dāng)TXD出現(xiàn)噪聲尖峰時(shí),使TXD短時(shí)間高于3.17V,觸發(fā)CAN模塊內(nèi)部切換,總線差分信號(hào)發(fā)生變化。
此處驗(yàn)證了上文的猜測(cè),確定故障發(fā)生原因?yàn)椋焊邷厣想姇r(shí),MCU、CAN模塊供電電壓出現(xiàn)波動(dòng),CAN模塊的TXD引腳無法識(shí)別MCU發(fā)生的高電平信號(hào),導(dǎo)致錯(cuò)誤幀持續(xù)出現(xiàn),造成CAN通信中斷。
3、解決方案
更換為電平匹配的隔離模塊后(由5V隔離模塊更換成3.3V隔離模塊),TXD高電平閥值電壓及CAN總線通訊電平幅值如下圖7所示,均已恢復(fù)正常幅值,通訊無異常。
圖7 更換模塊后的TXD高電平閥值以及CAN總線電平
本文轉(zhuǎn)載自致遠(yuǎn)電子。
推薦閱讀:
特別推薦
- 授權(quán)代理商貿(mào)澤電子供應(yīng)Same Sky多樣化電子元器件
- 使用合適的窗口電壓監(jiān)控器優(yōu)化系統(tǒng)設(shè)計(jì)
- ADI電機(jī)運(yùn)動(dòng)控制解決方案 驅(qū)動(dòng)智能運(yùn)動(dòng)新時(shí)代
- 倍福推出采用 TwinSAFE SC 技術(shù)的 EtherCAT 端子模塊 EL3453-0090
- TDK推出新的X系列環(huán)保型SMD壓敏電阻
- Vishay 推出新款采用0102、0204和 0207封裝的精密薄膜MELF電阻
- Microchip推出新款交鑰匙電容式觸摸控制器產(chǎn)品 MTCH2120
技術(shù)文章更多>>
- 意法半導(dǎo)體推出首款超低功耗生物傳感器,成為眾多新型應(yīng)用的核心所在
- 是否存在有關(guān) PCB 走線電感的經(jīng)驗(yàn)法則?
- 智能電池傳感器的兩大關(guān)鍵部件: 車規(guī)級(jí)分流器以及匹配的評(píng)估板
- 功率器件熱設(shè)計(jì)基礎(chǔ)(八)——利用瞬態(tài)熱阻計(jì)算二極管浪涌電流
- AHTE 2025展位預(yù)訂正式開啟——促進(jìn)新技術(shù)新理念應(yīng)用,共探多行業(yè)柔性解決方案
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
單向可控硅
刀開關(guān)
等離子顯示屏
低頻電感
低通濾波器
低音炮電路
滌綸電容
點(diǎn)膠設(shè)備
電池
電池管理系統(tǒng)
電磁蜂鳴器
電磁兼容
電磁爐危害
電動(dòng)車
電動(dòng)工具
電動(dòng)汽車
電感
電工電路
電機(jī)控制
電解電容
電纜連接器
電力電子
電力繼電器
電力線通信
電流保險(xiǎn)絲
電流表
電流傳感器
電流互感器
電路保護(hù)
電路圖